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Abstract: 
Run-time fault location in Field-Programmable Gate Arrays (FPGAs) is important 

because the resulting diagnostic information is used to reconfigure the FPGA for 
tolerating permanent faults.  In order to minimize the system downtime and increase 
availability, a fault location technique with very short diagnostic latency is desired.  In 
this paper, we present a fast approach for run-time FPGA fault location that can be used 
for high-availability reconfigurable systems.  By integrating FPGA fault tolerance and 
Concurrent Error Detection (CED) techniques, our approach can achieve significant 
availability improvement by minimizing the number of reconfigurations required for 
FPGA fault location and recovery.  The area overhead of our approach is studied and 
illustrated using applications implemented in FPGAs. 
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1. Introduction 

The abundance of programmable logic and routing resources in current-generation Field-

Programmable Gate Arrays (FPGAs) makes it possible to optimize an FPGA-based system for 

various perspectives, including performance, cost, and dependability.  From the performance 

perspective, parallel architectures for various applications can be implemented in FPGAs to 

increase throughput [Hauck 98, Huang 00a].  From the cost perspective, optimized designs for 

different applications can be time-multiplexed in the same FPGA to improve hardware efficiency 

[Trimberger 98]. 

For FPGA-based reconfigurable systems used in dependable applications, the FPGA can 

be reconfigured to operate without using the defective element.  In this way, the Field 

Replaceable Unit (FRU) is a fine-grained programmable logic block or a routing resource, 

instead of a chip or a board as in conventional fault-tolerant systems.  Hence, unlike 

conventional fault-tolerant systems, FPGA-based reconfigurable systems do not need additional 

chips or boards as standby spares.  The fine granularity of FRUs in FPGAs provides a more cost-

effective solution to tolerance of permanent faults in the system. 

Techniques for developing an FPGA-based dependable system include Concurrent Error 

Detection (CED) schemes for detecting errors during system operations, transient error recovery, 

tolerance for permanent faults, and fault location.  Various CED techniques have been presented 

and analyzed to guarantee data integrity [Mitra 00a, Saxena 00, Touba 97, Zeng 99].  By data 

integrity, we mean that the system either produces correct outputs or indicates errors when 

incorrect outputs are produced.  Correctness of the system is verified by redundant computations 

either in the time domain or using extra hardware.  Redundant computations for error detection 

include the prediction of some special characteristics of the system output, and a checker that 

compares such characteristics obtained from the system output and the prediction.  Output 

characteristics that are used for error detection can be the output itself, its parity, 1’s or 0’s count, 

transition count, etc.  CED schemes typically have short latency of detecting errors. 

Transient error recovery in FPGAs has been studied in two aspects.  Traditional system-

level approaches, such as rollback or roll-forward techniques [Pradhan 96, Huang 00b], can be 

used for restoring normal operations from transients that do not change the FPGA configuration 

data.  On the other hand, configuration readback and writeback operations can be used to detect 

and correct transient errors in FPGA configuration memory [Carmichael 99, Huang 01a]. 
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To tolerate permanent faults, FPGAs can be reconfigured so that the faulty parts are 

avoided in the new configuration.  Previous research can be broadly classified into two 

categories: (1) fast re-mapping and rerouting techniques for dynamic run-time generation of 

alternative configurations after error detection and fault location [Emmert 98, Hanchek 98, 

Mahapatra 99, Lakamraju 00], and (2) precompiled configuration approaches that create 

alternative configurations during the design phase and load the appropriate configuration after 

error detection and fault location [Lach 98, Huang 01b]. 

Run-time fault location provides information about parts to avoid in FPGAs before a 

new, fault-tolerant configuration is loaded.  Previous work on FPGA fault location can be found 

in [Jordan 93, Lombardi 96, Stroud 97, Stroud 98, Renovell 98, Mitra 98, Das 99, Abramovici 

99].  However, these techniques generally require tens or hundreds of reconfigurations to 

diagnose the fault location, which results in a major component of the system downtime for 

FPGA-based reconfigurable systems.  Therefore, there is a need for fast FPGA fault location that 

reduces the number of reconfigurations for diagnosis and integrates well with the subsequent 

FPGA fault tolerance scheme for reducing the overall downtime. 

In this paper, we present a fast, run-time FPGA fault location approach.  Our approach is 

based on the column-based precompiled configuration schemes for FPGA fault tolerance [Huang 

01b], where alternative configurations for the application circuitry in the FPGA are precompiled 

with certain columns being intentionally unused.  Instead of designing special configurations for 

fault location, we use the existing CED schemes in the application circuitry to find an alternative 

configuration that avoids the fault for the target application circuitry.  If CED checkers are 

distributed in each sub-circuit of the system, where each sub-circuit is isolated by flip-flops, we 

can localize suspect faulty columns and reduce the number of configuration attempts.  Moreover, 

using a modified column-based precompiled configuration scheme that generates alternative 

configurations by shifting sub-circuits, the enhanced version of our technique further reduces the 

number of reconfigurations for recovering from a failure.  Availability of the FPGA-based 

system is thus improved significantly. 

The organization of this paper is as follows.  In Sec. 2, we briefly describe the FPGA 

model used in this paper.  In Sec. 3, we discuss previous work related to this paper, including the 

dependable FPGA-based system architecture, previous FPGA fault location techniques, and the 

concept of a column-based precompiled configuration scheme for FPGA fault tolerance.  In Sec. 
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4, we present the baseline version, blind configuration attempts, of the proposed fault location 

approach.  In Sec. 5, we present an enhanced version of the baseline approach, which minimizes 

the number of configuration attempts.  Area overhead in the enhanced approach is also discussed 

and illustrated by an example implemented in FPGAs.  Section 6 concludes the paper. 
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2. FPGA Model 

Figure 2.1 shows the model of the programmable logic core of the FPGA used in this 

paper.  In this model, the programmable logic core of the FPGA consists of an array of three 

basic elements: Configurable Logic Blocks (CLBs), Connection Boxes (CBs), and Switch Boxes 

(SBs). 

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CB

SB

1 CLB Column

…

…

 
Figure 2.1: Architecture of the programmable logic core in FPGAs. 

A CLB is the basic building block in the two-dimensional programmable logic core of an 

FPGA.  It contains several SRAM lookup tables (LUTs) used to store user-defined 

combinational logic functions.  It also contains flip-flops, multiplexers, and dedicated circuitry 

for optimizing the performance of user applications.  CLBs are connected through horizontal and 

vertical wiring channels between neighboring rows and columns. 

Current-generation FPGAs have various lengths of wires for connecting CLBs that are 

separated by different numbers of blocks.  For example, in Xilinx Virtex-series FPGAs, single 

lines connect adjacent CLBs, while hex lines connect CLBs that are three or six blocks apart 

[Xilinx 01].  Signals on the wires are directed among CLBs and wiring channels by two types of 

routing matrices, CBs and SBs.  CBs connect the inputs and outputs of a CLB to the adjacent 

wiring channels.  SBs route horizontal and vertical wiring channels other than the I/Os of CLBs.  

Both CBs and SBs are matrices of Programmable Interconnect Points (PIPs).  The states of the 

PIPs in these switch matrices are controlled by SRAM cells, which are configured according to 

the desired functionality. 
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In this architecture, a CLB column includes all CLBs and the corresponding switch 

matrices (CBs and SBs) in the same column of the array.  The actual circuitry, programmable 

logic and routing resources, and the configuration architecture of each CLB column are identical.  

A typical example of the FPGA architecture used in this paper is the Xilinx Virtex-series FPGAs 

[Xilinx 01]. 
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3. Related Work 

3.1 High-level Architecture of FPGA-based Dependable Systems 

High-level architectures for building dependable FPGA-based systems can be found in 

[Saxena 00] and [Mitra 00b].  For example, Fig. 3.1 shows a dependable, dual-FPGA 

architecture in [Mitra 00b].  In this example, each FPGA is configured to run certain applications 

with some CED schemes.  Error signals reported by CED schemes are observed by a controller 

configured in the other FPGA.  When the controller observes the error signals from the other 

FPGA, it initiates subsequent fault location and recovery operations for repairing the other 

FPGA. 

Note that the controllers that carry fault location and recovery operations should be 

simple in order to avoid large area overhead.  Therefore, run-time fault location and recovery 

techniques should also be as simple as possible to be feasible for FPGA-based dependable 

systems. 

Controller

FPGA 1 FPGA 2

Reconfigurable Reconfigurable

Memory EPROM Memory EPROM

Controller

 

Figure 3.1: Dependable dual-FPGA architecture. 

3.2 Previous Fault Location Techniques 

Most of the papers on FPGA fault detection and location [Jordan 93, Lombardi 96, 

Stroud 97, Stroud 98, Renovell 98] focus on production test of FPGAs.  Application dependent 

fault-location approaches have been described in [Mitra 98, Das 99].  While the diagnostic 

resolution of these approaches is very fine-grained (e.g., faulty CLBs), the number of 

reconfigurations (and hence, the fault-location time) can be large (unless partial reconfiguration 

capabilities based on selective reprogramming of CLBs are available). 

The roving STAR approach described in [Abramovici 99, Emmert 00] mainly targets 

fault detection and location during system operation for fault-tolerant applications.  In the roving 
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STAR approach, two rows and two columns of the FPGA are reserved as the self-testing area 

(STAR) for detection of permanent faults.  The STAR areas are tested using special diagnostic 

configurations while the rest of the system is in operation.  After the testing of a STAR is 

complete, the STAR moves to a new location until the entire FPGA is completely tested.  

Complete testing of a STAR in a Lucent ORCA 2C15A FPGA [Lucent 01] takes about 31 

seconds, and the system clock has to be stopped for about 3 to 4 seconds for copying the state 

before the STAR moves to a new location [Emmert 00]. 

One concern with the roving STAR approach is the possible performance and availability 

degradation of the system because of the moving of the STAR.  For example, if the clock 

frequency is 100 MHz, there will be a loss of 300 million cycles every 3,100 million cycles of 

operation of the system – since the system is unavailable during these 3 to 4 seconds, this implies 

degradation of system availability even when failures are not present in the system.  Another 

cause of concern about the roving STAR technique is the error latency.  It has been reported in 

[Emmert 00] that it takes approximately 6 minutes before the STAR has roved over the entire 

chip for an FPGA with 20 columns.  Hence, unless CED techniques are used, it is possible that 

for an FPGA with 20 columns, it may take 6 minutes (approximately 36,000 million cycles for a 

100 MHz system) before a fault is diagnosed.  The above problems can be reduced if fine-

grained CED techniques are used and, depending on the responses of the checkers, fault-location 

techniques (possibly using a STAR approach) are used.  Using the STAR approach without 

utilizing the checker data can be very expensive in terms of the fault-location time and hence, 

system down-time. 

3.3 Column-Based Precompiled Configuration Scheme 

The choice of run-time fault location techniques for FPGA applications is closely related 

to the reconfiguration scheme used for tolerating permanent faults in the system.  For example, if 

the dynamic re-mapping technique in [Emmert 98] or the tile-based precompiled configuration 

scheme in [Lach 98] is used for tolerating faulty CLBs, a fault location technique with diagnostic 

resolution of one CLB is required.  Alternatively, if the localized swapping technique in 

[Lakamraju 00] is used, it is necessary to locate the faulty resource within a CLB. 

In this paper, we present a fast, run-time FPGA fault location approach based on the 

column-based precompiled configuration techniques developed in [Huang 01b] for tolerating 
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permanent faults.  Column-based precompiled configuration techniques achieve fast 

reconfiguration with small storage overhead for the precompiled, alternative configurations. 

The basic concept of the precompiled configuration approach is to generate alternative 

versions of logic placement and routing information of the same application in the FPGA during 

the design phase.  In each configuration version, a certain part of the FPGA is intentionally 

unused.  In this way, each configuration version can tolerate permanent faults in unused 

resources.  Because alternative configurations are pre-generated during the design phase, the 

post-fault-location downtime is minimized. 

In the column-based approach, each alternative configuration is created by shifting part 

or the entire of the original configuration in units of columns.  Figure 3.1 shows an example of 

the overlapping column-based precompiled configuration scheme.  Because the corresponding 

columns in which certain functions are mapped in different configuration versions are highly 

similar, using run-length coding on the configuration difference between such columns 

significantly reduces the storage overhead for alternative configurations.  For a k-column circuit 

with m-column fault tolerance, the total number of alternative configurations required is (C(k+m, 

m) – 1) for the overlapping precompiled configuration scheme. 
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(a)                                                         (b) 

Figure 3.1: The overlapping precompiled configuration. (a) Original configuration. (b) 

Alternative configuration when column 3 is intentionally unused. 
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4. The Baseline Fault Location Scheme: Blind Configuration Attempts 

When alternative configurations are available in the system, one simple way to locate the 

fault while repairing the system is to try all possible configurations alternately until a 

configuration that successfully avoids the fault is loaded.  For example, successful configurations 

in the column-based precompiled configuration scheme can be the configurations that the faulty 

column is intentionally unused, or the configurations that the faulty block is happened to be 

empty because of the shifting of columns.  For each configuration, CED schemes for the 

application circuitry are used to determine if the attempt is successful.  Equivalently, this “blind” 

reconfiguration scheme replaces high-complexity fault location techniques with CED schemes 

on various configuration attempts at run-time. 

There are several ways to generate patterns for testing each configuration attempt.  First, 

if the rollback recovery technique [Pradhan 96, Huang 00b] is used in the system for transient 

error recovery, one can use the same method to retry the input sequence that fails in the original 

computation.  In the rollback recovery scheme, the system retries the faulty computations again 

starting from a certain time instant called checkpoint.  The system state at each checkpoint is 

verified and stored.  The input sequence since the previous checkpoint is also stored for the 

purpose of retrials.  Although the test using rollback retry is closely integrated with the transient 

recovery scheme, such test sequence is not complete.  There may be faults escaping such test 

sequence because they do not propagate to the output observed by the CED checker in 

alternative configurations.  For example, the system may always feed a logic-0 signal on a stuck-

at-0 wire in an alternative configuration attempt throughout the rollback recovery process.  

Although this stuck-at-0 wire is detected in the original configuration, it escapes the test 

sequence using rollback recovery.  The effect of fault escapes during configuration attempts is 

further discussed in Sec. 4.1. 

The second method is to use pseudo-exhaustive BIST (PE-BIST) patterns [McCluskey 

81] to test each sub-circuit in the application running in the FPGA exhaustively.  Such patterns 

provide very high fault coverage without relying on explicit fault models.  Also, it does not 

require a large memory to store the test patterns because a minimal length PE-BIST pattern can 

be generated using a simple test pattern generator [McCluskey 82].  The test pattern generator 

can be implemented in the controller of the other FPGA in the dual-FPGA scheme. 



 10  

The third method is to use a linear feedback shift register (LFSR) to apply pseudo-

random test patterns to the circuit running in the FPGA [Abramovici 90].  Like PE-BIST, this 

approach does not require memory overhead to store test patterns, and the test patterns can be 

easily generated by the controller of the other FPGA in the dual-FPGA scheme.  The fourth 

method is to use the functional verification pattern of the target application in the FPGA.  Such 

pattern guarantees the correct functioning in the application, but it requires memory overhead to 

store the patterns. 

Compared to the original circuit running in the FPGA, the major area overhead for this 

blind reconfiguration approach is the extra storage space and area reserved for precompiled 

configurations and the area for the CED scheme.  However, both parts of the overhead are 

inherent either in the FPGA fault tolerance scheme or in the error detection scheme that is 

necessary for constructing a reconfigurable, dependable computing system.  Therefore, this fault 

location approach does not cause major area overhead in a system that already has some CED 

scheme for data integrity and the precompiled configuration technique for fault tolerance. 

In order to reduce the diagnostic time, one should choose a CED scheme with small error 

detection latency.  For example, duplex CED that compares the results from duplicated modules 

in every cycle is feasible in minimizing the latency.  On average, if there are k alternative 

configurations available for a k-column circuitry in the FPGA with 1-column fault tolerance in 

the overlapping precompiled configuration scheme, we need to try k/2 configurations assuming a 

single fault in the system.  Therefore, for small circuits that are mapped within a few columns, 

this blind reconfiguration approach has potential in reducing system downtime caused by fault 

location. 

Compared to the roving STAR approach in [Abramovici 99], this blind reconfiguration 

scheme guarantees data integrity and does not impose performance and availability degradation 

in fault-free operations.  The control of the blind reconfiguration process is also simpler, and thus 

more feasible for FPGA-based dependable systems with autonomous recovery.  However, there 

are some issues related to the blind reconfiguration scheme, and we discuss these issues in the 

following subsections.  The issues include the effect of error detection capability in the CED 

scheme, the precision of fault location result, and the order of configuration attempts. 
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4.1 Effect of Error Detection Capability in CED 

Because the blind reconfiguration approach uses the existing CED scheme to determine a 

successful configuration, data integrity is preserved after a successful configuration attempt.  

Consequently, even though some faults may escape a test sequence such as rollback retry 

patterns, data integrity is not compromised after reconfiguration providing faults are present only 

in the originally used part of the FPGA. 

However, during the normal operation of the original configuration, permanent faults 

may occur in the reserved part of the FPGA and become dormant faults.  In this case, when the 

next permanent fault occurs in the used part in the original configuration, such a single fault in 

the original mapped circuitry causes multiple faults in some alternative configuration attempts.  

Figure 4.1 illustrates this effect of dormant faults in the original configuration.  The shaded area 

is unused, and the faulty area is marked with “x”.  In this case, because of a dormant fault at (row 

2, column 3), a single fault in the original mapped region at (row 1, column 2) causes multiple 

faults when the alternative configuration in Fig. 4.1(b) is attempted. 

Note that this situation occurs when there are multiple permanent faults in the FPGA.  To 

alleviate the effect of dormant faults, CED schemes with high coverage of multiple faults should 

be used.  For example, diverse duplex systems with different implementations of the same logic 

function are good candidate because they provide better protection against multiple faults than 

other application-independent CED techniques [Mitra 00a]. 

A1

A3

B1

B2

B3

X
Col 1 Col 2 Col 3

X

                               

A1

A3

B1

B2

B3

X

Col 1 Col 2 Col 3
X

 

(a)                                                                 (b) 

Figure 4.1: Example of the effect dormant faults. (a) Original configuration. (b) Alternative 

configuration when column 1 is intentionally unused. 
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4.2 Fault Location Precision 

One important feature for the blind configuration attempts is that the result does not 

define a precise fault location in the FPGA.  Instead, it finds a successful alternative 

configuration rapidly to resume the normal operation of the circuit in the FPGA.  The actual fault 

may not occur in intentionally unused columns in a successful configuration attempt. 

Figure 4.2 shows an example of the undefined fault location.  Again, the shaded area is 

unused, and the faulty area is marked with “x”.  Because the configuration data is shifted in units 

of columns, the faulty block (row 2, column 2) is unused in the alternative configuration in Fig. 

4.2(b) where column 1 is intentionally unused.  This configuration attempt will be considered 

successful even though the actual fault does not occur in the intentionally unused column 

(column 1).  

Because the actual fault location is not necessarily in intentionally unused columns in a 

successful configuration attempt, we should try all precompiled configurations except for the 

ones that fail in avoiding current faults when the next permanent fault occurs.  For example, in 

Fig. 4.2, other configurations that use column 1 should not be completely excluded in the 

attempts when the next permanent fault occurs.  This is to avoid the degradation of fault-tolerant 

capability (measured by the number of tolerable faulty columns in the FPGA) in the column-

based precompiled configuration scheme. 

A1

A3

B1

B2

B3

X

Col 1 Col 2 Col 3

                                      

A1

A3

B1

B2

B3

X

Col 1 Col 2 Col 3

 

(a)                                                                          (b) 

Figure 4.2: Example of undefined fault location. (a) Original configuration. (b) Alternative 

configuration when column 1 is intentionally unused. 
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4.3 Order of Configuration Attempts 

In a CED scheme, the most crucial unit for guaranteeing data integrity is the CED 

checker.  Therefore, the order of configuration attempts should be carefully arranged to ensure 

correct functioning of the CED checker. 

Figure 4.3 shows an example of the impact of reconfiguration order on data integrity.  

Suppose the checker is mapped in the A3 block, and the faulty block is B3 in the original 

configuration.  If the first configuration attempt avoids column 1, the checker is shifted to the 

faulty block and the checker output may be stuck at zero (error-free).  In this way, the CED 

scheme fails to function correctly, and data integrity is not preserved in subsequent operations. 

A1

A3

B1

B2

B3
X

Col 1 Col 2 Col 3

checker                                        

A1

A3

B1

B2

B3
X

Col 1 Col 2 Col 3

checker  

(a)                                                                          (b) 

Figure 4.3: Effect of reconfiguration order. (a) Original configuration. (b) Alternative 

configuration when column 1 is intentionally unused. 

To avoid corruption in the checker output, self-checking checkers should be used 

[McCluskey 90].  Such checkers guarantee data integrity for any single fault at the checker 

outputs.  Another solution to guarantee the correct functioning in the checker is to try 

configurations without shifting the checker column (denoted as Confsame_checker) first.  The system 

tries configurations that shift the checker column (denoted as Confshift_checker) only when none of 

Confsame_checker is successful. 

Because the checker remains in the same position for Confsame_checker, the detection 

capability of the checker is identical to that of the normal operations.  Also, the destination 

column for the checker in Confshift_checker (e.g., column 2 in Fig. 4.3) is intentionally unused in one 

of the configurations in Confsame_checker.  If the destination column for the checker is the only faulty 

column, one of the configurations in Confsame_checker can avoid the fault and becomes a successful 

attempt.  The problem illustrated in Fig. 4.3 can thus be avoided by such an ordering of 

configuration attempts. 
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5. The Enhanced Fault Location Scheme: Minimal Configuration Attempts 

5.1 Distributed CED Checkers 

There are different levels of granularity at which CED can be performed.  For 

reconfigurable systems, since it is possible to repair the system rather than replacing the faulty 

chip or the faulty board, it is reasonable to implement CED at a distributed, fine-grained level of 

sub-circuits in the system.  For example, Fig. 5.1 shows the architecture of a duplex CED 

scheme with distributed checkers in each stage of a pipelined system.  Other system-level 

architectures with such fine-grained CED have been described in [Mitra 00a]. 

input
F11

F12

Reg

Reg

Checker

error1

Stage 1

F21

F22

Reg

Reg

Checker

error2

Stage 2

Fm1

Fm2

Checker

errorm

output

Stage m…

…

…

s1

s2

 

Figure 5.1: Duplex CED with distributed checkers in a pipelined system. 

In Fig. 5.1, because pipeline registers are used to separate different stages in the system, 

errors signals from distributed CED checkers can localize faults within part of the system.  If the 

CED checker that checks the i-th stage outputs does not signal an error in a certain cycle, 

correctness of computations in the i-th stage in this cycle can be ensured.  In this way, we can 

reduce the number of suspect faulty columns in the FPGA and the number of configuration 

attempts. 

Signals that propagate across more than two sub-circuits (e.g., both copies of signal s, s1 

and s2, in Fig. 5.1) are also checked in intermediate sub-circuits if they are routed by PIPs in such 

intermediate sub-circuits.  This is used for localizing the fault that is caused by an open in a long, 

global signal. 

The outputs of the distributed checkers in each sub-circuit can be stored in flip-flops, 

which can be connected in a scan chain.  When the system signals an error, the contents of the 

flip-flops storing the checker outputs can be scanned out for further processing by the controller 

in the other FPGA of the dual-FPGA architecture.  The idea of using a scan chain to scan out the 
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checker outputs is not new – it was used in the IBM mainframes to locate the faulty FRU (chip 

or board).  The scanned data can be read out through a dedicated Scan Out pin or through the 

boundary scan port generally available in FPGA chips.  If the number of checkers is moderate, 

dedicated I/O pins can be used to directly observe the checker outputs. 

The controller stores information about the CLB columns that are occupied by each sub-

circuit in the system.  Such information is directly available from CAD tools, such as Xilinx 

Alliance software [Xilinx 01], at the design phase through the floorplan of each sub-circuit and 

checker in the FPGA.  After the controller scans out the checker data, it can execute the 

following simple routine to find the set of suspect faulty columns: 

Suspect = ∅ 

For each checker output do 

 If the checker produces an error signal 

  Suspect = Suspect ∪ {Columns occupied by the sub-circuit that is checked 

by the checker} 

 Endif 

Endfor  

Note that we use the union operation for finding the suspect set because a fault in a global 

signal that connects multiple sub-circuits causes error reports in multiple checkers.  In this case, 

every sub-circuit that use or propagate this signal can be suspect.  If the suspect set contains only 

one CLB column, the configuration to be loaded is the one that does not use the suspect column.  

If the suspect set contains multiple CLB columns, the configurations to be loaded are restricted 

to those that do not use at least one of the suspect CLB columns. 

Suppose that there are m sub-circuits in the system, each of which has a localized, 

distributed CED checker.  For this distributed checker scheme, the worst-case number of 

configuration attempts for avoiding single fault that does not occur on wires across multiple sub-

circuits is max(k1, k2, …, km), where ki is the number of CLB columns occupied by the i-th sub-

circuit.  The worst-case number of configuration attempts for avoiding single fault that occurs on 

a wire across multiple sub-circuits is the summation of ki’s in every sub-circuit along the path of 

the wire. 

Note that since the faulty column suspects are specified by distributed checkers, our 

technique can also be integrated with the roving STAR approach in [Abramovici 99] in order to 
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find the precise fault location.  The only difference is that, instead of roving the STAR across the 

entire FPGA, we only need to rove the STAR across the suspect columns.  The resulting number 

of reconfigurations required in the roving STAR approach is thus reduced when integrating with 

the distributed CED checkers in our approach. 

Generally, for fine-grained partitioning of sub-circuits, the number of configuration 

attempts is smaller than systems with coarse-grained sub-circuits.  This is because each sub-

circuit occupies fewer columns in the FPGA in systems partitioned with finer granularity.  

However, there is a possible tradeoff with area overhead because of the increasing number of 

distributed checkers in the system because of fine-grained partitioning.  We discuss this issue 

using an example in FPGAs in Sec. 5.3. 

5.2 Modified Column-based Precompiled Configuration Scheme 

By floorplanning the design, each sub-circuit and its corresponding CED checker can be 

confined within a certain region in the FPGA.  In this way, we can minimize the number of 

configuration attempts by using a modified column-based precompiled configuration scheme, 

which is illustrated in Fig. 5.2. 

In Fig. 5.2, instead of shifting part of the configuration in units of CLB columns, 

alternative configurations in the modified scheme are created by shifting logic mappings in units 

of sub-circuits.  Each alternative configuration avoids the entire mapped region of a sub-circuit 

in the original configuration by such sub-circuit-based shifting.  Because the suspect faulty 

columns are formed based on the distributed checkers in each sub-circuit, the number of 

configurations to be loaded is minimized by such sub-circuit-based shifting strategy. 

For single fault that does not occur on wires across multiple sub-circuits, the suspect 

faulty columns are confined within one sub-circuit.  In this case, only one reconfiguration is 

necessary for the entire FPGA fault location and recovery process.  For single fault that occurs 

on wires across n sub-circuits, the worst-case number of configuration attempts is n. 

To guarantee single-fault tolerance, the modified column-based precompiled 

configuration scheme needs to reserve max(k1, k2, …, km) CLB columns in the original 

configuration.  Compared to the scheme in Sec. 5.1, this enhanced approach minimizes the 

number of configuration attempts with the price of extra CLB columns that are reserved as 

backup. 
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Figure 5.2: The modified column-based precompiled configuration. (a) Original 

configuration. (b) Alternative configuration when checker 2 reports error. 

Because alternative configurations are created by shifting multiple columns, the same 

coding scheme in the original column-based precompiled configuration approach described in 

[Huang 01b] can be used for compressing configuration data and achieving significant storage 

reduction.  For an m-sub-circuit system, the total number of alternative configurations required 

for tolerating single fault is m.  Compared to the overlapping column-based precompiled 

configuration scheme where (k1+k2+…+km) alternative configurations are required for 

guaranteeing single-fault tolerance, the modified scheme needs fewer configurations and thus a 

smaller configuration storage overhead. 

Note that when a sub-circuit occupies a large number of columns, an alternative 

configuration that avoids the whole region of such sub-circuit may not be found because of the 

routing constraints and the total number of columns available in the FPGA.  Therefore, the 

modified column-based precompiled configuration approach is more feasible when the system 

can be partitioned into smaller sub-circuits. 

5.3. Case Study: LZ Compressor in FPGAs 

In this section, we present the estimation of area overhead due to the fine-grained 

partitioning and distributed checkers in the enhanced scheme.  The area overhead is estimated 

using a case study, the Lempel-Ziv (LZ) compression application [Ziv 77], in FPGAs.  The LZ 

encoder circuitry is shown in Fig. 5.3, which is identical to the systolic-array approach in [Jung 

98] and [Huang 00a]. 
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Figure 5.3: A systolic-array LZ encoder. 

[Huang 00a] proposed an area-efficient inverse comparison CED scheme for the LZ 

encoder in FPGAs.  The inverse comparison CED scheme detects the error by checking if the 

encoded output can be decoded to match the source data correctly.  However, because the check 

is only performed at the output codewords, it is difficult to partition the LZ encoder and to insert 

distributed checkers in fine granularity if the inverse comparison CED is used.  Therefore, in this 

case study where the entire LZ encoder is the target system, we use the duplex CED scheme for 

estimating the impact of area overhead due to the fine-grained partitioning and distributed 

checkers.  Using a duplex CED scheme, 100% single fault coverage can be assured. 

In Fig. 5.3, the LZ encoder consists of a systolic array of 512 shift registers with 

corresponding Processing Elements (PEs).  Each shift register is 8-bit wide, and each PE is 

basically a comparator that matches source symbols with data in shift registers.  The priority 

encoder takes the match results from the PE array and encodes the match position in the array.  

The OR-tree takes the match results from the PE array and determines if a match is found.  A 

length counter is used for counting the matching length, and there are input and output buffers 

and controllers for coordinating input and output sequences.  A detailed circuit can be found in 

[Jung 98] and [Huang 00a]. 

Fine-grained partitioning of the LZ encoder can be realized by grouping multiple shift 

registers, PEs, and their corresponding encoding circuitry in the priority encoder and OR-tree as 

sub-circuits.  Length counters, input controllers, and output controllers can be grouped as another 

sub-circuit.  The resulting partitioned LZ encoder architecture with m sub-circuits is shown in 

Figure 5.4.  A duplex CED scheme with an output comparator is implemented in each sub-
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circuit, and outputs in each sub-circuit are latched in order to localize the fault at the sub-circuit 

level. 
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Figure 5.4: Partitioned LZ encoder. 

The parameter m, the number of sub-circuits in the system, in Fig. 5.4 is determined by 

considering the following trade-offs.  First, each column should be occupied by no more than 

one sub-circuit, and we can choose a smaller m to reflect this factor.  If a column is divided into 

multiple sub-circuits, multiple CED checkers are used to check different parts of the column.  

Such fine-grained sub-circuit partitioning is overkill in the column-based precompiled 

configuration scheme because the diagnostic resolution requirement is at the level of columns.  

Excessive checkers in a column may cause large area overhead without improving fault location 

latency. 

Second, m should be big enough so that sub-circuits 1 to (m – 1) (partitions of the systolic 

array) are not significantly larger than the m-th sub-circuit (global control logic), which is 

relatively fixed in size.  Large difference in sub-circuit sizes generally requires more columns to 

be reserved as backup in the modified column-based precompiled configuration scheme 

discussed in Sec. 5.2.  This is because the size of the reserved area is determined by the size of 

the largest sub-circuit.  It is thus more desirable to partition the system into sub-circuits with 

similar sizes. 
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Our designs are mapped in the Xilinx Virtex XCV1000 FPGA [Xilinx 01], which has a 

CLB array of 64 rows and 96 columns.  The area and clock frequency results are reported by 

Xilinx Alliance 3.1i place-and-route tool.  The global control block with duplex CED (the m-th 

sub-circuit in Fig. 5.4) is mapped into five columns.  In order to balance sub-circuit sizes, the 

parameter m is chosen between 9 or 17 (i.e., 8 or 16 sub-circuits in the systolic array and 1 sub-

circuit for global control), which results in a size of 10 columns or 5 columns, respectively, for 

each sub-circuit with duplex CED (sub-circuit 1 to (m – 1) in Fig. 5.4) in the systolic array. 

Table 5.1 shows the resulting area and clock frequency for simplex, duplex without 

partitioning, duplex with nine sub-circuits, and duplex with 17 sub-circuits.  Note that although 

the area overhead in terms of CLB utilization increases with the number of sub-circuits, the 

number of columns used does not change significantly in different duplex schemes.  This is 

because the place-and-route software generally results in scattered empty CLBs in order to 

facilitate routing.  Therefore, the area overhead due to distributed checkers and fine-grained 

partitioning is not very significant compared to a duplex scheme without partitioning.  

Degradation of the maximum clock rate because of partitioning is within 10% compared to the 

duplex scheme without partitioning. 

Table 5.1: Comparison of area overhead and clock rate. 

Scheme CLB utilization 
(slices) 

CLB columns 
used 

Max. clock rate 
(MHz) 

1. Simplex 4863 41 33.2 

2. Duplex without partition 9743 84 32.7 

3. Duplex with 9 sub-circuits 9794 85 31.5 

4. Duplex with 17 sub-circuits 9962 85 30.0 

Table 5.2 summarizes the partitioning results for duplex schemes with 9 and 17 sub-

circuits.  Because there are global signals connecting the controller sub-circuit and all the other 

sub-circuits in the systolic array, the worst-case suspect set spans the entire used region in the 

FPGA.  However, such global signals represent only about 0.2% of all signals in the system in 

both schemes, and only faults in such signals can produce a suspect faulty set of size greater than 

two sub-circuits.  Therefore, with a very high probability, the FPGA fault location and recovery 

process can be completed in only one or two reconfigurations using the modified column-based 

precompiled configuration scheme described in Sec. 5.2. 
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Table 5.2: Comparison of two partitioning schemes. 

Scheme No. of 
checkers 

Max. no. of 
columns per 

sub-ckt 

Max. no. of 
columns in the 

suspect set 

Percentage of signals 
across more than 2 

sub-ckts 

Duplex, 9 sub-ckts 9 10 85 0.19% 

Duplex, 17 sub-ckts 17 5 85 0.22% 

For the duplex scheme with 9 sub-circuits, 10 additional columns are required as backup 

for guaranteeing 1-column fault tolerance using the modified column-based precompiled 

configuration scheme.  For the duplex scheme with 17 sub-circuits, only 5 additional columns 

are required to achieve the same fault tolerance capability.  Since both schemes are mapped into 

the same number of columns, the duplex scheme with 17 sub-circuits is preferred if the modified 

column-based precompiled configuration scheme is used. 
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6. Conclusion 

We presented a new technique, which integrates CED schemes with the column-based 

precompiled configuration approach used for FPGA fault tolerance, for solving run-time FPGA 

fault location and recovery problem rapidly.  Using distributed CED checkers in each 

floorplanned sub-circuit of a system, faulty column suspects in the FPGA can be obtained, and 

the number of configuration attempts for fault location and recovery can be reduced.  With a 

modified column-based precompiled configuration scheme that shifts the configuration in units 

of floorplanned sub-circuits, the number of configuration attempts can be further minimized. 

As a case study, we implemented our technique in the LZ compression application with 

duplex schemes in Xilinx XVC1000 FPGAs.  For duplex CED schemes, extra area overhead and 

variations of clock frequencies due to partitioning and distributed checkers are small.  When the 

modified column-based precompiled configuration scheme is used, a duplex scheme with 17 

sub-circuits is preferred and can complete the FPGA fault location and recovery process in one 

or two reconfigurations with a very high probability. 
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