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Simple Bounds on Serial Signature 
Analysis Aliasing for Random Testing 

Nirmal R. Saxena, Piero Franco, and 

Abstract-It is shown that the aliasing probability is bounded 
above by (1 + E ) / L  M 1/L ( E  small for large L)  for test lengths 
L less than the period, L,, of the signature polynomial; for test 
lengths L that are multiples of L,,  the aliasing probability is 
bounded above by 1; and, for test lengths L greater than L,  
and not a multiple of L,, the aliasing probability is bounded 
above by 2 / ( L c  + 1). These simple bounds avoid any exponential 
complexity associated with the exact computation of the aliasing 
probability. Simple bounds also apply to signature analysis based 
on any linear finite state machine (including linear cellular 
automaton). 

From these simple bounds it follows that the aliasing probabil- 
ity in a signature analysis design using p intermediate signatures 
is bounded by ((l+~)’p’)/L’, for p < L and L / p  < L,. 
By using intermediate signatures the aliasing probability can be 
substantially reduced. 

Index Tem-  Dual codes, linear codes, signature analysis, 
weight distribution. 

I. INTRODUCTION 
IGNATURE analysis is a widely used data compaction S method for built-in self test in VLSI. In data compaction, 

reduced response data are used for checking testing results. 
Signature analysis is a compaction method based on linear 
feedback shift registers. Compaction methods achieve substan- 
tial reduction of the response data; however, this reduction is 
achieved at the expense of fault coverage. Aliasing causes 
loss of effective fault coverage. 

The important issues in signature analysis design are: the 
signature register size r; the feedback connections for the 
signature register (feedback connections are determined by 
the signature polynomial U ( X ) ) ,  the test length L, and the 
loss of coverage due to aliasing. One way to address these 
issues is to include signature analysis in the fault simulation 
experiments. But, this precludes fault dropping (because the 
entire test length L has to be applied to check the signature) 
and increases the simulation time substantially. The simulation 
experiments do not provide any design insight for feedback 
connections of the signature register. Also, the experimentally 
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estimated aliasing probability holds good only for the modeled 
faults. 

An alternative to fault simulation is to express the faulty 
behavior of the CUT in terms of an error model. In the past 
[15], [16], equally likely errors, single bit errors, and burst 
errors were some of the error characteristics that have been 
assumed. In particular cases, it may be possible to justify 
the use of these models; however, the general applicability 
of these models for error characteristics in VLSI circuits, 
seems questionable. The Bernoulli model [13] has been widely 
used by several researchers. This model is reasonable for 
combinational circuits with the restriction that random test 
patterns are applied, and the faults do not cause sequential 
behavior. In the Bernoulli model, output errors are assumed to 
occur with probability p in the presence of a fault, and these 
output errors are independent events. The probability p for a 
fault is called the detection probability [7]. 

To address signature analysis design issues, an exact formula 
for the aliasing probability as a function of parameters: r ,  
U ( X ) ,  L, and p can be derived. Using the exact formula, var- 
ious parameters can be examined to obtain optimum signature 
analysis designs. This is easier said than done because the 
complexity associated with the exact analysis is exponential. 
The calculations of p and the aliasing probability are NP-hard 
problems [lo]. Exact analysis is infeasible for practical design 
parameters. A feasible approach is to derive upper bounds 
on the aliasing probability. At design time, the designer has 
the freedom to choose the signature polynomial U ( X ) ,  the 
signature register size r ,  and the test length L; however, the 
designer has uncertainty about what faults occur in the circuit. 
The value of p is restricted by the nature of faults (depending 
on the fault, the value of p can be anywhere between 0 and 1 
[ll]). Even if the nature of faults is known the complexity of 
calculating p is exponential at worst. Bounds on the aliasing 
probability that depend on L and the signature register design 
(defined by U ( X ) )  and that are independent of p will help the 
designer. In this paper, such bounds are called simple bounds. 
Simple bounds avoid the exponential complexity associated 
with the analysis of various design choices. Simple bounds 
reported in this paper are shown to hold for any linear finite 
state machine, including cellular automaton, implementation 
of signature analysis. 

11. SIMPLE BOUNDS: MOTIVATION 
Algorithms to compute exact aliasing probability have been 

presented in [5], [lo], and [17]. The algorithm presented in 
[ 171 calculates aliasing probability for primitive polynomials, 
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Polynomial degree r 
9 

11 
12 

for test lengths L less than 2' - 1. This requires O(7-2') time 
complexity and O(2') space complexity for a particular value 
of test length L < 2' - 1. To obtain aliasing probability values 
for an entire range of test length L, the algorithm presented 
in [17] would require 0 ( L 2 T )  time complexity and O(2') 
space complexity. The algorithm presented in this paper and 
in [5] computes exact aliasing probability for all test lengths 
L and for all primitive and nonprimitive polynomials. The 
complexity required is O(L2') and O ( L )  in time and space, 
respectively. Table I shows the computation time for exact 
aliasing probability up to test length L = 1000. The entries 
in the last two rows (r = 31) are the projected time. The 
computation in Table I is based on the algorithm [Appendix] 
presented in this paper. The algorithms in [5] and [17] take 
comparable time. 

The practical test lengths L (are of order lo6 in Intel 486) 
[4] and practical register sizes (r  = 31 in IBM RS/6000) 
[8] are large enough to make the exact aliasing computation 
infeasible. 

Test Length L Computation Time 
1000 2 s  
1000 8 s  
1000 16 s 

111. DERIVATION OF SIMPLE BOUNDS 

In this section, a simple bound is derived on the 
aliasing probability using the following approach. First, 
three closed-form upper bounds on the aliasing probability, 
P,l(L,p, U ( X ) ) ,  as a function of the detection probability 
p ,  the test length L, and the signature polynomial U ( X )  are 
derived. Second, these bounds are combined to obtain a tight 
simple upper bound. In deriving the first two bounds only the 
period, L,, of the signature polynomial U ( X )  is used as its 
defining characteristic. 

Definition 1: The period L,  of a polynomial U ( X )  (without 
X as a factor) of degree r is the smallest positive L,  such that 
U ( X )  divides X L c  + 1. If U ( X )  has X as a factor then the 
period L,  of this polynomial is the period of the largest degree 
factor U l ( X )  (without X as a factor) of U ( X ) .  If U ( X )  is 
primitive then L,  = 2' - 1. 
If U ( X )  is nonprimitive then L,  < 2' - 1. 

Theorem 1: Given a polynomial V ( X )  without X as a 
factor, with period L,  and a single output response corre- 
sponding to a random pattern test length L,  then for L < L,, 
P,l(L,p, U ( X ) )  is bounded above by the function 

TABLE I 
COMPUTATION TIMES FOR EXACT ALIASING ON SPARC IPC WORKSTATION 

- Lp2(1 - p)L-2  - p (  1 - p ) L - l  - p L 
2 

and also bounded above by the function j"2 (L ,  p )  = 

1 - (1  - p)L+1 p L  L p ( 1  - p)L-1  

( L + l ) p  L f l  2 

Proof: See [ll]. 
f l  ( L ,  p )  and f2(L, p )  define two closed-form upper bounds 

on P,l(L,p,U(X)) .  For p close to zero, f l ( L , p )  is tighter 
than f 2 (  L ,  p ) ;  however, for p close to one, f2(L, p )  provides a 
tighter bound on P,l(L,p, U ( X ) ) .  This is illustrated in Fig. 1. 

31 1 lo00 I 97 days 
31 I 1OOOOOO I 265 yrs 

Fig. 1. Plot of bounds f l  and f2 as a function of p .  

The plots in Fig. 1 are for test length L = 100. Although 
for all practical purposes, L = 100 is a small test length 
it does illustrate the nature of f l ( L , p )  and f 2 ( L , p )  as a 
function of p .  These two bounds hold good for test lengths 
L less than L,. Bounds f l  ( L ,  p )  and f 2  ( L ,  p )  are not tight in 
neighborhood of p = 0.5. Another bound f 4 ( L , p ) l  is derived 
based on dual codes in this paper and this bound is tighter in 
the neighborhood of p = 0.5. By combining bounds f l ( L , p ) ,  
f2(L,p),  and f 4 ( L , p )  a tighter simple bound on the aliasing 
probability is derived. In the following sections bound f4( L,  p )  
is established. 

A. Bounds Using Dual Codes 
The respective weight enumerators Nw and M, of a ( L ,  L- 

r )  linear code and its dual, ( L ,  r )  code, are related by (1) [l] 
(McWilliams Identity). Here \<I = 2L-r is the number of 
codewords in the ( L ,  L - r )  linear code. 

L L 

N,(x + Y ) ~ - " ( %  - 9)" = 1 < 1  W , , x L - w ~ w .  (1) 
w=o w=o 

Substituting x - y = p and x + y = 1 - p ,  we have 

L-w w - 
L L 

Nw(1 - P )  p - 2-' Mw(l - 2 ~ ) ~ .  (2) 

The left-hand side of (2) is the expression for the aliasing 
probability [lo], Pal( L ,  p ,  U ( X ) ) ,  including the error-free 
case. The above equation suggests that the weight distribution 
of dual codes can be used to compute the exact aliasing 
probability. The dual code formulation of calculating exact 
aliasing probability has been used earlier [17], [6]. 

Bound. 

w=o w=o 

' f + ( L , p )  is used because f s ( L , p )  has been used in [ l l ]  for Ivanov's 
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B. Parity Check Matrix 

The parity check matrix, H, of the code generated by U ( X )  
can be constructed using the modular form linear feedback 
shift register (LFSR). The columns in matrix H are generated 
by successive states of LFSR. The initial state of the LFSR 
is the column vector [l 0 0 ...0lT. The number of columns 
generated are L. Fig. 2. illustrates the generation of parity 
check matrix for polynomial X 3  + X + 1, for length L = 6 
code. 

The next state in an r stage LFSR is a linear transformation 
of the previous state and this linear transformation is charac- 
terized by an r x r matrix A. The characteristic polynomial of 
the matrix is U ( X ) .  For example, the matrix A for the LFSR 
in Fig. 2 is given by 

A =  1 0 1 .  (3) [: e :] 
[: : :] 

By the nature of construction of the parity check matrix the 
first r columns in H form an r x r identity matrix I. It is easy 
to show that columns r + 1 through 2r in H form an r x r 
submatrix that is same as A'. For example, in Fig. 2 

A 3 =  1 1 1 .  (4) 

This is the submatrix formed by columns 4, 5, and 6 in 
H (Fig. 2). In general, any T x L parity check matrix, H, 
generated by polynomial U ( X )  can be compactly represented 
by the following equation, where I is the T x r identity matrix 
and the powers of r x r submatrix A represent successive 
blocks of r columns in H. If L is not a multiple of r ,  then 
there will be remaining L - columns in H that are not 
described by powers of A. 

Fig. 2. Parity check matrix for ['(S) = .Y3 + X + 1. 

Since the matrix A is nonsingular the minimum distance, 
d(AZ), for any i, of the code generated by any power of A 
is at least one. Therefore, we have 

(7) 
L 

&in = d ( H )  L 1-1. 

C. Partitioning Codewords Generated by H 
The set of codewords generated by H can be partitioned into 

T + 1 distinct classes CO, C1, . . . , C,. Class Ci has codewords 
such that they have i ones in the first r bits. The first T bits 
of the codewords are generated by the identity submatrix I in 

H. Therefore, there are (i) (i.e., all linear combinations of 

rows in H by picking only r rows) codewords in class Ci. 
From the minimum Hamming distance property, codewords 
in Ci, i > 0, will have weights greater than or equal to 
LL/r] + i - 1. Let class Ci be partitioned into disjoint sets 
according to the weights of the codewords. Let Bi,j be the 
number of codewords in Ci having weight LL/r] + j + z - 1. 
Clearly, 

1. T 

The aliasing probability formula can be rewritten as 
r 

( 5 )  P,i(L,p, U ( X ) )  = 2-' B t , j ( l  - 2~)L*'+~+j- l  
(9) t=l j 2 0  

H = I A' A2'.  . . A [ $ ] ' .  . [ 
Theorem 2: The minimum Hamming distance of the dual 

code formed by the polynomial U ( X ) ,  without X as a factor, + 2-' - (1 - p)? 

is greater than or equal to LL/rJ. 
Proof: The dual code defined by U ( X )  is generated by 

using the parity check matrix H of U ( X )  as the generator 
matrix. Let A be the r x r matrix that represents the next 
state linear transformation of the states of the LFSR defined 
by U ( X ) .  Since we are given that U ( X )  does not have X 
as a factor this implies that matrix A is nonsingular. This 
fact follows from the property that U ( X )  is the characteristic 
polynomial of A. This further implies that any power of A is 
also nonsingular. The dual code is generated by the row-space 
of matrix H. Therefore, the minimum Hamming distance of 
the dual code is the minimum nonzero weight of the code 
generated by H. Using the (5) formulation of the matrix H, the 
dual code can be thought of as a concatenated code generated 
by submatrices I, Ar, . . . , A'141. The minimum Hamming 
distance d,,, = d ( H )  is given by 

D. Dual Code Bound f4 (L ,  p )  on Aliasing Probability 

ity. We have the following inequality: 
Using (9) we derive upper bounds on the aliasing probabil- 

1(1 - 2p)114J+i+j-1 

. p 3 ; ; , ) + 2 - ' - ( 1  - p ) ?  

Since Bj,i = (:) we have 
j 2 0  

r 

(SI (11) 
P,z(L,p, U ( X ) )  5 2- 1(1 - 2 p ) p + 2 - 1  

i = l  

+ 2- - (1 - p ) L .  



SAXENA et al.: BOUNDS ON SERIAL SIGNATURE ANALYSIS ALIASING 64 1 

After some algebra, we have bound, f4(L,p) ,  on the aliasing 
probability P,l(L,p, U ( X ) )  

(12) 
f4(L,p) = (1 - 2 p p - 1 ( ( 1 +  11 - 2pl)' - 

+ 2-' - ( 1  - p)? 

Iv. COMBINING BOUNDS f i ,  f 2 ,  AND f 4  

First we replace, functions fi, f 2 ,  and f 4  by three monotone 
functions 91, g2, g4, respectively. These monotone functions 
bound f l ,  f2 ,  and f 3  as follows: 

f4(L,P) I g4(L,p) 
= 11 - 2 p J 1 9 - 1 ( ( 1 +  11 - 2pJ)?  - l ) 2 r r  + 2-' 

A simple bound on the aliasing probability for test lengths L 
less than L, is derived by taking the maxima of the function 
min(gl,g2,94} over the entire range [OJ] of p .  For a given L 
the function g4(L,p) monotonically decreases as p goes from 
0 to 0.5, and monotonically increases as p goes from 0.5 to 1. 

For small values of p ,  the min function is dominated by 
gl(L,p). For mid-values of p ,  g4(L,p) dominates the min 
function. Function ga(L,p) dominates the min function for 
large values of p .  There exist psmall and plarge (as illustrated 
in Figs. 3 and 4) Oc psmall < piarge < 1,  such that: 

1) g l (L ,p)  I g 4 ( L , ~ ) ,  for P I psmall 

2) g4(L,P) < gl(L,P), and g4(L,p) < g2(L,p), for 

3) s ~ ( L , P )  I g4(L,p), for P 2 p large .  

Psmall  < P < Plarge 

The values psmall and plarge can be calculated by solving 

respectively. It follows from the behavior of these func- 
tions that a simple bound on the aliasing probability is the 
maximum of gl(L,psmall) and g2(L,plarge). Solving for the 
exact values of psmall and plarge is a difficult problem. 
However, in order to derive simple bounds on the alias- 
ing probability it is sufficient to derive an upper bound 
on psmall and a lower bound on plarge. This is because 
gi(L,psmall) = 1 / ( ( 1 +  L) (1  - p s m a l l ) )  and gZ(L,Plarge) = 

Using standard numerical techniques, bounds on psmall and 
plarge can be derived. Clearly, the bounds on psmall and plarge 

depend on L and r.  
Let US define E(L ,  r )  = max { ( 1  - psmall)- ' ,  ( p l a r g e ) - ' }  - 

1. c(L,r)  is small for large values of test length L. It 
follows from the definition of E ( L , T )  that 1 + E ( L , ~ )  = 
max { ( 1  - psmall)-' ,  (p large ) - ' } .  By solving the following 
equation (for closed-form bounds on psmall and p large )  a 
closed-form upper bound on c(L, r )  can be derived. 

equations gl(L,P) = g4(L,p) and g2(L,p) = g4(L,p), 

1 / ( ( 1 +  L ) p l a r g e ) .  

1 
(1 - 2 p p  + 2-' = __ 

L +  1' 

L=5000 1-13 
0.00035t  I 

0 .0003- 

0.00025.. 

g4(Lp) 

2. d P S "  

/ -2 

5 0.00015,  [ 
'd 0.0001~ 2 
d 0.00005, 

e 

I 
0 .'02 0 .  04 0 .'06 0 .'08 0 .  1 

Detection Probability p 

Fig. 3. Plot of bounds g1 and 94 as a function of p .  

L=5000 -13 

0.b5 0.'96 0,'97 0 : 9 8  0.99  
Detection Probability p 

Fig. 4. Plot of bounds 94 and g2 as a function of p .  

A closed-form upper bound on psmall is 

and a closed-form lower bound on plarge is 

Therefore, a closed-form bound on E (  L,  r )  is 

Table I1 compares the value of E calculated (listed as exact 
in the table) by using numerical techniques (bisection method) 
and the value obtained from the closed form bound. It is 
clear from the table that E values are small and also that the 
closed-form upper bound on E is reasonably tight. 

It was already shown that a simple bound on the 
aliasing probability is max {g1(L, psmal l ) ,  gn(L, p l a y e ) }  I 
max { ( 1  - P s m a l l ) - l ,  (plarge>-l}1/(L + 1) = (1 + E(L ,  r ) )  
/ ( L  + 1).  This is almost 1/L  because E is very small compared 
to 1. This refined simple bound holds good for test lengths 
L < L,. 

Thus far we have derived a simple bound on the aliasing 
probability for test length less than L,. For test lengths 
L 2 L,, we use the simple bounds derived in [lo]. Table 111 
summarizes these simple bounds. 
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L,  T Exact 1 Bound 

1 0 3 , ~  

8 x lo3,  16 

104,14 

Serial 

Next State 

4 7 ~ 1 0 - ~  5 5 . 7 ~ 1 0 ~ ~  

8 . 9 ~ 1 0 ~ ~  9.1 x 

6 . 9 ~ 1 0 ~ ~  7.1 x1OP3 

’I 
Aemory Elemnts 

TABLE I11 
SIMPLE BOUNDS SUMMARY 

Next Stake 
Function 

I 

Present State 

Fig. 5. Linear finite state machine based signature analysis. 
2 - 

L c + l  
1 

Serial Input 

v. &PLICATION TO LINEAR FINITE STATE MACHINES 
The simple bounds derived in this paper apply to any linear Fig. 6. LFSR implementation of linear finite state machine. 

finite state machine implementation of signature analysis. A 
linear finite state machine is a finite state machine in which the 
next state is determined by a linear combination of the present 
input and a fixed linear transformation of the present state. 
In this paper our interest is in linear operations over GF(2). 
Algebraically, a linear finite state machine can be characterized 
by the equation Y,+1 = AY, + ziD. Y,+1, Y,  are column 
vectors of dimension T denoting the next state and the present 
state respectively. A is an T x T matrix representing the linear 
transformation. The scalar variable zi is the binary serial input 
at time i. D is a column vector of dimension T which defines 
the manner in which the serial input is fed into the state 
machine. For example, in Fig. 5, the defining parameters in 
the linear finite state machine are 

A =  1 1  1 D =  0 ;  r = 3 .  [: r :I; [:I 
The serial signature analysis for any general linear finite 

state machine can be easily instrumented as follows: the 
serial input to the finite state machine is provided by the 
serial output of the combinational circuit under test. Upon 
application of test responses, the state machine undergoes 
state transitions starting initially with a fixed state Yo (usually 
all zero). The final state YL after an application of a length 
L test is the signature of the circuit under test. This is 
the most general definition of the signature. The polynomial 
division definition [lo] applies only to modular LFSR’s. 
The LFSR implementation of signature analysis discussed in 
the foregoing sections is one particular implementation of a 
linear finite state machine. One of the reasons why LFSR’s 
are popular is because they can be efficiently implemented 
(Fig. 6). Also, in addition to the apparatus of linear algebra 
the well-studied [l] GF(2) polynomial algebra is useful in 
analyzing the aliasing behavior in LFSR’s. Associated with 
every matrix A is a characteristic polynomial defined by the 
determinant of the matrix A + IX, where I is the identity 
matrix. In the case of LFSR implementation, this characteristic 
polynomial is the same as the signature polynomial U ( X ) .  It 

is possible for two different linear finite state machines to 
have the same characteristic polynomial. For example, the 
characteristic polynomial for both the Fig. 5 and the Fig. 6 
implementations is X 3  + X + 1. Matrices A and B that have 
the same characteristic polynomial are said to be similar. 

Another compact implementation of a linear finite state 
machine is the linear cellular automaton [12]. In [12] the 
equivalence of linear cellular automata and linear feedback 
shift registers with respect to aliasing behavior has been 
demonstrated. However, this equivalence was restricted to 
linear finite state machines based on irreducible character- 
istic polynomials. In this work, we extend this equivalence 
to include linear finite state machines based on reducible 
characteristic polynomials. The following theorem proves the 
equivalence, with respect to aliasing probability, of two sig- 
nature register implementations based on two similar matri- 
ces. 

Theorem 3: If A and B are two nonsingular and similar 
T x T matrices in GF(2) then the two signature register 
implementations based on A and B, respectively, have the 
same aliasing probability. 

Proof: It is sufficient to prove that A and B have the 
same aliasing error responses. Since A and B are similar 
there exists a nonsingular matrix P such that A = P-lBP. 
Without any loss in generality assume that A is in the matrix 
form corresponding to a modular LFSR with characteristic 
polynomial U ( X ) .  

Lemma: The error polynomial E ( X )  is a multiple of U ( X )  
if and only if E(A)  is an all zero matrix. 

Proof of Lemma: Let E ( X )  be the error response poly- 
nomial that is a multiple of U ( X ) .  If the serial input is fed 
into the j t h  stage of the modular LFSR corresponding to U ( X )  
then the signature of E ( X )  is ( X j - l E ( X ) )  mod U ( X ) .  Since 
A is a nonsingular matrix, U ( X )  will not have X as a factor, 
this implies that X j - l E ( X )  is a multiple of U ( X )  if and 
only if E ( X )  is a multiple of U ( X ) .  Therefore, the signature 
of E ( X )  is zero independent of what stage the serial input 
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is fed into. In matrix terms, for all j ,  the column vector 
Y L  = E(A)I,  is zero if and only if E ( X )  is a multiple 
of U ( X ) ,  where E(A) is the matrix polynomial and I ,  is 
the unit column vector with 1 in the j t h  row. Also, E(A)I,  
is a zero column vector for all j if and only if the matrix 
E(A) is all zero. This leads us to the assertion that the 
error polynomial E ( X )  is a multiple of U ( X )  if and only 
if E(A) is an all zero matrix. If E ( A )  is an all zero matrix 
it implies that PE(A)P-l is also an all zero matrix; but, 
PE(A)P-l = E(PAP-l)  = E(B),  therefore E(B)  is an 
all zero matrix. Since P is a nonsingular matrix we have 
B = PAP-l .  We can also show that if E(B)  is an all zero 
matrix then E(A) is an all zero matrix. This leads us to the 
result: E ( X )  is a multiple of U ( X )  if and only if for all 
matrices B similar to A, E(B)  is an all zero matrix. In other 
words, an error response that produces a zero signature in the 
signature register corresponding to matrix A will also produce 
a zero signature in the signature register corresponding to 
matrix B .  

Now we will show that an error response that produces 
a nonzero signature in the signature register corresponding to 
matrix A will also produce a nonzero signature in the signature 
register corresponding to matrix B. Let us start with error poly- 
nomial E ( X )  that has a nonzero signature in the matrix A im- 
plementation of the signature register. In the polynomial divi- 
sion sense, the signatures of E ( X ) ,  X E ( X ) ,  . . . , X ' - l E ( X )  
are all nonzero and distinct. If they are not distinct then it 
leads us to the contradiction that the period L,  of U ( X )  is 
less than T .  For a degree T polynomial U ( X )  without X as 
a factor it is impossible to have the period L, less than T .  

This implies that the T column vectors E(A)I,  corresponding 
to all T distinct values of j are nonzero and distinct. This is 
only possible if and only if E(A)  is a nonsingular matrix. 
It is a trivial fact to verify that all matrices similar to a 
nonsingular matrix are also nonsingular. This implies that 
E(B)  is nonsingular, because E ( B )  is similar to E(A) by 
the similarity relation E(A) = P- lE(B)P .  This implies that 
the column vector E(B)I,  is nonzero which in turn means 
that an error response that produces a nonzero signature in the 
signature register corresponding to matrix A will also produce 
a nonzero signature in the signature register corresponding 
to matrix B. This completes the proof because we have 
shown the error responses that alias in the signature register 
implementation of A are exactly the error responses (no more 
and no less) that alias in the signature register implementation 
of B. 

A. Application of Simple Bounds to U ( X )  with X as a Factor 

Simple bounds also apply to signature polynomials U ( X ) ,  
with X as a factor, for certain restricted LFSR implemen- 
tations of serial signature analysis. The restriction on LFSR 
implementations applies to the manner in which the serial 
output of the circuit under test is connected to the LFSR 
implementing U ( X ) .  For a detailed discussion see [lo]. 

VI. CONCLUSIONS 
Simple bounds on the aliasing probability were presented. 

A useful guideline to the system designer would be to use a 
signature polynomial with period greater than the test length. 
For example, with test length L = lo6, a primitive polynomial 
with degree greater than or equal to 20 guarantees the aliasing 
probability to be less than 0.0001%. The bounds presented in 
this paper apply to any linear finite state machine implementa- 
tion of signature analysis and therefore include linear cellular 
automata. This result has practical importance because the 
system designer can first choose a characteristic polynomial 
with an appropriate period. After selecting a characteristic 
polynomial, the designer can then choose an efficient (from the 
standpoint of VLSI implementation) linear finite state machine 
representation that realizes this polynomial. The preferred 
linear finite state machine may be a cellular automaton because 
of its regular structure. 

Using intermediate signatures (sometimes also called seg- 
mented signatures) [9] is a way to reduce aliasing probability. 
For test length L, if ,B intermediate signatures at uniform 
intervals of length L / p  are used then it follows from the 
simple bounds that the aliasing probability is bounded above 
by ((1 + ~ ) ~ p o ) / L o ,  for p < L and LIP < L,. By using 
intermediate signatures the aliasing probability can be sub- 
stantially reduced. The designer can choose an appropriate ,6 
value. Experimental results in [9] and [18] demonstrate the 
effectiveness of using intermediate signatures. 

This paper covered simple bounds on serial signature anal- 
ysis. Simple bounds have also been derived for multiple- 
input signature analyzers; however, the proof of these bounds 
requires a different combinatorial treatment. The results for 
multiple-input signature analyzers will be reported in a sep- 
arate paper. 

APPENDIX 
The following pseudo-code represents the computation of 

the weight distribution of the dual code: 

main ( )  

{ 
unsigned long r; / *  signature register size * /  
unsigned long L; / *  test length L*/ 
unsigned long *M; / *  weight distribution of dual code * /  
unsigned long *H; / *  parity check matrix * /  
unsigned long count,limit; 
unsigned long mask,poly; 
unsigned long i,j,k; 
M = malloc((size-t) ((L+l)*sizeof(unsigned long))); 
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H = malloc((size-t) (L*sizeof(unsigned long))); 
scanf ( “ $ 1 ~ ”  I &poly) ; 
mask = 1; 
for (i=l; i r; i++) { 
mask = 2*mask; 
1 
M[ 0]=1; 
for (i=l;i< =L;i++) 
M[i]=O; 
H[ O]=Oxl; 
for (i=l;i< L;i++) 
t 
if ((H[i-l]&mask) >O) 
H[i] = (((H[i-1] < 1) - poly) & (2*mask-1)); 
else 
H [ i ]  = ((H[i-1] < 1) & (2*mask-1)); 
1 
for (i=l;i< 2=;i++) / *  order L2’ nested loops * /  
t 
count=O; 
for (j=O;jc L;j++) 
count += parity(H[j]&i,r); 
M[count] = M[count]+l; 
1 
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