Per for mance Evaluation of Checksum-Based ABFT"

Ahmad A. Al-Y amani, Nahmsuk Oh and Edward J. McCluskey
Center for Reliable Computing— Sanford University, Sanford, California
{alyamani, nsoh, g m@crc.stanford.edu}

Abstract

In Algorithm-based fault tolerance (ABFT), fault toleranceis tail ored to the algorithm performed. Most of
the prevous gudies that compared ABFT schemes considered orly aror detedion andcorredion capabhliti es.
Same prevous gudies looked a the overhead bu no previous work —as far as we know— compared dfferent
recovery schemes for data procesgng appi cations considering throughpu as the main metric. In this work, we
compar e the performance of two recovery schemes: recomputing andABFT corredion, for different error rates.
We consider errors that occur during computation as well as those that occur during error detedion, location
and corredion proceses. A metric for performance ewluation d different design dternatives is defined.
Results dhow that multiple aror corredion using ABFT has poarer performance thansingle eror corredion
even a high error rates. We also present, implement and evaluate erly detedionin ABFT. In early detedion,
we try to deted the arors that occur in the dnecksum calculation before starting the actual computation. Early
detedionimproves throughpu in cases of intensive @mputations and cases of high error rates.

1. Introduction

A major concern in fault tolerant systems design is to provide the desired fault tolerance within the
available cost, power consumption, performance constraints, etc. It has been shown that in certain matrix
applications, low overhead fault tolerance can be achieved using ABFT [1] [2].

Errors occur with different rates depending on the environments where computing systems are operated. For
example, satellites experience error rates based on their altitude and location. This variation makes different
fault tolerance schemes more appropriate in different environments. The recent increase in computationally
intensive data processing applications makes it essential to protect the computation units such as ALUs against
transient errors [3]. Performance is a critical metric for these data processing applications. Errors influence the
rate at which these applications run. The influence of errors on the performance of these systems depends on the
recovery scheme applied. ABFT was invented for providing low-overhead recovery in data processing
applications. In this paper we model checksum ABFT for matrix operations considering transient faults in
hardware. We consider three matrix operations: matrix multiplication, LU decomposition and matrix inversion.

The main contributions of this work are: 1) A performance-based comparison of error recovery by
recomputing and by ABFT correction, for various error rates. Such a performance comparison study is essential
for data processing applications for which ABFT is a suitable fault tolerance scheme, 2) An evaluation of the
effect of correction capability (code distance) on performance. In this evaluation, we show by simulation that
multiple error correction has a negative impact on performance even for high error rates, 3) Definition of a
metric for performance evaluation of fault tolerance schemes for data processing applications, and 4) An early
detection scheme for ABFT is presented and its impact on performance is analyzed.

In Sec. 2, Checksum-based ABFT is explained. In Sec. 3, we review the related literature. Section 4
discusses fault injection. In Sec. 5 we present the experiments and results. Section 6 is the conclusion.

2. Checksum-Based ABFT

ABFT refersto aclass of techniques that are based on tailoring fault tolerance to the algorithm performed.
It can be tuned to provide the desired fault tolerance e.g., single error detection, single error correction, etc. For

Y This work was supported by King Fahd University of Petroleum and Minerals through the Saudi Arabian Cultural Mission to USA. It was aso
supported in part by the National Aeronautics and Space Administration and administered through the Jet Propulsion Laboratory, California Institute of
Technology under Contract No. 1216777.

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

some computations, ABFT can be implemented with low overhead as shown in [1] where the redundancy ratio
was shown to decrease linearly as the matrix dimension wasincreased. In [2], it was shown that using ABFT for
solving a linear system of equations, error detection required 13.1% memory overhead and 32% execution time
overhead. Single error correction required 28% memory overhead and 73% execution time overhead.

Checksums for error control in matrix operations was presented for linear computations in [4]. ABFT was
presented in [1] where checksums were given as an example. Jou et al. enhanced ABFT with the weighted
checksums for better detection and correction capability [5]. Anfinson et al., explained the algebraic
interpretation of ABFT for matrix operations with definitions for distance, code space, etc. [6].

In the weighted checksum approach, d rows (columns) are added to the original matrix [5]. For an nxn A
matrix, define d linearly independent nx1 weight vectorsw® , i = 1, 2,...d, with elementsw®;,j = 1, 2,..., n.

@ o 0 w® w?® ... wC

- . . . L
Definition 2.1 Define an nx(n+d) WaghtsmatrleZE) 1 0w w? o wihp
o oo A

5) 0 o 1 w® w? ... W(d)E

The foll owing terms are defined as foll ows: weighted row chedsum metrix A, = AXW , weighted column
checksum metrix A, =W' x A andweighted full checksum metrix Ay, = W' x AxW

W wd o w® -1 0 ... 0oC

n

Definition 2.2: Define adx(n+d) code matrix |, _ E{\éz’ w? . w? 0 -1 .. 0 E
0: Do R
5\,@ W oW 0 0 _1E

The null spaceof HisN(H) = {x: Hx = 0}. A column o A, (cdl it X) is error-freeif it belongs to the null
spaceof H. If every d columns of H are linealy independent, up to d errors can be deteded and upto [d/20
errors can be mrreded in every column (row) of A, (By). Let the syndrome vedor be s= Hx (x'H").

An error-freevedor x generates a 0 syndrome while an erroneous vedor X generates anon-zero syndrome.
Let the corredionvedor bec= X - x, Hc = H(X - X) = s. By solving the linea system of equations, ¢ can be
obtained. This g/stem canna be used with more than [d/2[Jequations that correspondto the eroneous elements.
A problem in this processis that it is unknown to the corredion modue which [d/2[Jelements are eroneous.

This meansthat it might try as many as CEJ/dz[possbiliti esfor eat erroneous vedor in the worst case.

3. PreviousWork

Hudak et a., compared several fault-tolerant software techniques including ABFT based onerror coverage
[7]. The techniques were ranked based on MTTF and cost. Prata & al. compared ABFT with result cheding
based on error coverage, overheal and ease of use [8]. In [2], ABFT for detedion oy was compared to
detedion and corredionin terms of error coverage, memory size and exeautiontime.

Beaudry defined computation capadty as a performance metric in order to study the interadion between
performance and reliability [9]. She incorporated computation cgpadty in reliability modeling of redundant
systems. She defined computation capacity as the anourt of useful computation per unit time avail able on the
system. Since she was evaluating gracdully degrading systems, she defined computation cgpadty as a function
of the system state. For our evaluations, we define computation cagpadty as afunction d the error rate.

In [10], Model-based evaluation o performability, which is a measure that combines performance and
dependability, was used to improve the dfediveness of fault tolerant software (N-version programming). In
their model, the program accepts inputs at the beginning of ead iteration d its exeaution and provides output
that is a function d the most recent inpu. A dedsion function determines if the output of an iteration is
erroneous. They quantified performability by the number of succesdul iterations during some bounded time
interval. Their aim was to demonstrate the feasibility of performabilit y modeling.

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

The work presented here is unique in that it evaluates the performance of different recovery techniques
executing in the presence of errors. The error rate and the recovery scheme used have a direct impact on the rate
at which the algorithm produces correct results. We compare the performance of (1) Error recovery by
recomputing and (2) ABFT correction considering computation capacity. Such a study is essential for data
processing applications in environments that introduce transient errors like single event upsets (SEUs) [11]. An
example for such applications is the REE project where science applications are supposed to run in space (a
radiation environment) [3]. Besides fault tolerance, high performance is a critical metric for such a system. This
study is important for the design of such systems since it compares recovery schemes based on performance.

4. Fault Injection

The fault model assumed in [1] and [5] was a malfunction of a processor in a processor array. The
manifestation was that one or more elements of the resultant matrix could be erroneous. The ABFT experiments
performed in [2] used FERRARI to emulate transient bit flips at execution time within the address space of a
program. In [12], the fault model used was a bit flip in a data entry during the execution. Hudak et al. used
FIAT to inject faults by changing a memory location (code or data) [7]. In [8], Xception was used for emulating
transient faultsin ALUs, data and address busses, general -purpose registers, condition registers and memory.

In this work the fault model assumed is a bit flip in the memory, the cache, a register, or in the ALU.
Injecting faults in the code segment will cause one of the following cases: 1) the program will crash due to
illegal operations, 2) the program will malfunction due to a control flow error or a status register error or 3) the
program will perform an instruction different from the original one and so will produce an erroneous result. For
cases 1 and 2, the schemes we are comparing will not work properly since ABFT does not detect these errors.
For case 3, one or more entries will change in the result, which is equivalent to an error in the data segment.

The distribution of the number of errors generated is Poisson(Ats), where t is the time elapsed and sis the
target matrix size. In other words, the error rate (A) is the mean number of errors per unit time per floating point
number. After choosing the number of errorsto be injected, data entries are chosen uniformly for fault injection.
Fault injection is performed by making a random change in the chosen entry. For the ABFT schemes applied,
there is no difference between a bit flip and a random change since they both will cause the syndromes to have
non-zero values in the same positions, and the location and correction processes are similar in both cases.

Based on the classification given for FERRARI, our fault injection scheme covers transient faults in the
data bus and the address bus while fetching and storing operands. It also covers computation unit faults as well
as storage (GPRs, cache and memory) faults in the data portion of the program.

5. Experimentsand Results

Three ABFT agorithms: matrix multiplication, LU decomposition and matrix inversion were implemented
in C with matrices of floating point numbers. We used different values for d, which also decides the correction

capability. For encoding we use the standard H matrix from [6], Wj(i) = g,

Since the errors are assumed to be transient, two recovery approaches are possible: 1) Recomputing upon
error detection, and 2) Correction using the syndrome matrix (ABFT correction), see Sec. 2. Recomputing is a
rollback scheme that requires only error detection, which costs less than correction in terms of memory
overhead. On the other hand, it might cost more in terms of execution time depending on the application and the
error rate. ABFT correction is a rollforward technique that costs more memory overhead. It might cost less in
execution time depending on the application and the error rate. In case ABFT correction is unable to correct the
errors, it a'so recomputes. Both schemes are implemented and their performance is compared.

LU decomposition is the most computationally intensive process in solving linear systems of equations. A
square matrix is generated randomly using a uniform distribution and then decomposed. To verify correctness
of the result, we check if it isa solution for the system of linear equations or not.

Matrix inversion is an example for a computationally intensive operation. In [12], Shultz method was used
for ABFT matrix inversion to preserve checksum encoding. A sguare matrix A is generated randomly and

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

inverted. To verify the mrrednessof the result, we multiply A* by A and subtract the result from the identity
matrix |. If the subtradion result is non-zero then the result is erroneous.

In ou simulation experiments, ead algorithm runs for 100 iterations with every combination d (matrix
size, code distance and error rate). An iteration corresponds to runring the dgorithm onceoninpu data. Every
time an iteration produces an erroneous output the total number of iterationsis incremented upto 200.
Definition 5.1: Success Ratio (SR) is defined asthe fradion d iterationsin which corred results were produced.
Definition 5.2: Completion Time (CT) is defined as the time it took the program to complete afixed number of
iterations. This time includes the time spent onthose iterations that did nd produce rred results.

Definition 5.3: Computation Capacity (CC) is defined as the number of succesdul iterations per unit timewith a
certain error rate. Based onthis definiti on, the following formula can be used to compute computation cgpadty:
cC = SRxTotal Number of Iterations

CT
Definition 5.4: By early detection (ED), we mean cheding for errors after computing the chedksums and kefore
starting the adual computation. This cheding is performed using the same thedksum detedion matrix ‘H’ used
for ABFT detedion. We implement ealy detedion and evaluate its eff ed on computation capacity. Itsrationale
isto avoid running intensive cmputations in the presence of uncorredable arors.

In these experiments we used matrix sizes (10x10to 50x50) of floating point numbers. The eror rates used
were (10° to 10°) errors per entry per seaond. To avoid round df errorsin floating point computations we used
a range of 10° within which two numbers were mnsidered equal. In the Stanford Advanced Reseach and
Global Observations Satellit e (ARGOS) projed, in which Commercial Of-the-Shelf (COTS) comporents where
tested in spaceusing Software Implemented Hardware Fault Tolerance (SIHFT), the number of errors observed
in the memory was around 10errors per megabyte per day (=9.25<10"° errors per entry per semnd). We use
this as well as higher error ratesin ou experiments. With al error rates we used, multiple eror corredion dd
not show good performance mmpared to single @ror corredion a recomputing.

5.1 LU Decomposition (L UD)

Figure 1 shows a comparison between recomputing and ABFT corredion for LU decompasition for various
corredion capabiliti es. The label (i EC) corresponds to correding i errors. The aror rate in the figure starts at
10" because the mmputation capadties for smaller error rates were the same & those for 107 i.e., the lines
extend haizontally for smaller error rates. Recomputing had the highest computation capadty for all error rates.
Thisisdueto the complicated corredion processwith more than asingle cdhedsum row and column. Corredion
can't be goplied with asingle chedksum row and column sinceL and U matrices are not full ched<sum metrices.

\ —&—recomputing
- 1EC
—><-2EC

N
R

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

25

N
o

[N
o

[N
o

Computation Capacity (iteration/sec)

4]

Error Rate (error/sec/floating point number)

Figure 1: Computation capacity of recomputing and ABFT
correction with different code distances (LUD, 40x40)

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

Figure 2 shows the effect of early detection on computation capacity. Under high error rates early detection
improves the computation capacity for al schemes because it reduces the latency of detection. At low error
rates the loss in computational capacity was small. An interesting observation from the figure is that early
detection might make correction a favorable scheme. The figure shows that without early detection, the
computation capacity of recomputing is higher than that of single error correction. By applying early detection,
single error correction turns out to have higher computation capacity than recomputing at high error rates.

14

=
N

=
o

—@—recomputing
--@---recomputing(ED)
—&—1EC

---A-- 1 EC (ED)
—*—2EC

--X:- 2 EC (ED)

o]

Computation Capacity (iteration/sec)

T T T T T T
1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03
Error Rate (error/sec/floating point number)

Figure 2: Effect of early detection on computation capacity (LUD, 50x50)
5.2 Matrix Inversion (M1)

Figure 3 shows the computation capacity of recomputing and ABFT correction for matrix inversion with
various correction capabilities. It shows that at low error rates, single error correction had high computation
capacity. At high error rates, recomputing had higher computation capacity.

R\
N
N

N

1.00E-05 1.00E-04 1.00E-03 1.00E-02

Error Rate (error/sec/floaing point number)

2

[y
o

P
[N}

o
©

Computation Capacity (iteration/sec)

I
IS

Figure 3: Computation capacity of recomputing and ABFT
correction with different code distances (Ml, 40x40)

Figure 4 shows the effect of early detection on computation capacity. Since matrix inversion is more
computationally intensive than multiplication and decomposition, early detection shows improvement in
computation capacity for all error rates.

The results for matrix multiplication are omitted for space limitations.

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

o
©

—@—recomputing

-- @ - recomputing(ED)
—A&—1EC

---A--1EC (ED)
——2EC

--#- 2 EC (ED)
—X—4 EC

--%:- 4 EC (ED)

o
g

Computation Capacity (iteration/sec)
o
o

0.6

T T T -
1.00E-06 1.00E-05 1.00E-04 1.00E-03

Error Rate (error/sec/floating point number)

Figure 4: Effect of early detection on computation capacity (Ml, 50x50)

6. Summary and Conclusions

Our simulation shows that multiple eror corredionin chedsum-based ABFT isinefficient in terms of bath
completion time and successratio for the gplicaions we evaluated.

By comparing the schemes based oncomputation cgpadty, single aror corredion was the best scheme for
matrix multiplicaion. Recomputing was the best scheme for LU decomposition. For matrix inversion,
recomputing was better for high error rates and corredion was better for low error rates. Also ealy detedion
was beneficial for multiplication and decompasition ony at high error rates. However, it was beneficia for
inversion uncer all error rates due to the computationally intensive nature of the dgorithm.

In conclusion, error rate had adired impad on performance. Recomputing and single aror corredion with
checksum-based ABFT had close computation cgpadties. Multiple eror corredion had worse computation
cgpadties than recomputing and single aror corredion even with high error rates. The results siown here ae
for the given matrix appli cations using chedksum-based ABFT. For diff erent matrix algorithms or diff erent fault
injedion schemes, results might change andthat is asubjed for further investigation.

Refer ences

[1] K. Huang and J. Abraham, “Algorithm-Based Fault Tolerancefor Matrix Operations’, IEEE Trans. on Computers, Vol. C-33, No. 6,
pp. 518528 June 1984

[2] R. K. Acreg Nasr Ullah, A. Karia, J. T. Rahmeh and J. A. Abraham, “An Objed-Oriented Approach for Implementing Algorithm-
Based Fault Tolerance”, 12" Annud Internationa Phoenix Computers and Comrrunications Conference, pp. 210216, Mar. 1993

[3] R. R. Some and D. Ngo, “REE: A COTS-Based Fault Tolerant Parallel Procesing Supercomputer”, IEEE Digital Avionics Systems
Conference, Oct 1999

[4] Paul S. Dwyer, Linear Computations, JohnWiley & Sons, 1951

[5] J. Jouand J. Abraham, “Fault-Tolerant Matrix Arithmetic and Signal Processng on Highly Concurrent Computing Structures’, Proc.
IEEE, vol. 74, pp. 732741, May 1986

[6] C. Anfinsonand F. Luk, “A Linea Algebraic Mode of Algorithm Based Fault Tolerance”, IEEE Transactions on Compuiters, Vol.
37, No. 12, pp. 15991604 Dec 1988

[7] J Hudsk, B. Suh, D. Siewiorek and Z. Segall, “Evaluation & Comparison d Fault-Tolerant Software Techniques’, IEEE
Transactions on Reliability, Vol. 42, No. 2, June 1993

[8] P. Prata and J. Silva, “Algorithm Based Fault Tolerance Versus Result-Cheding for Matrix Computations’, Internationd
Symposium on Fault Tolerant Computing FTCS-29, pp. 4 — 11, June 1999

[9] M. D. Beaudry, “Performance Considerations for the Reliability Analysis of Computing Systems’, PhD Thesis, Stanford Univerity,
Eledricd Engineaing, 1978

[10] A. T. Ta, J. F. Meyer and A. Avizienis, “Performability Enhancement of Fault-Tolerant Software”, |IEEE Transactions on
Reliahbility, Vol. 42, No. 2, June 1993[11] J. Bedhan, L. Edmonds, R. Ferraro, A. Johrston, D. Katz and R. Some, “Detail ed Radiation
Fault Modeling of the Remote Exploration and Experimentation (REE) First Generation Testbed Architedure”, IEEE Aerospace
Conference, pp. 279281, March 2000

[12] E. I. Milovanovic, I. Z. Milovanovic, M. K. Stojcev and G. S. Jovanovic, “Fault-Tolerant Matrix Inversion onProcesor Array”,
Eledronic Letters, pp. 12061208 June 1992

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

