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Abstract 
In Algorithm-based fault tolerance (ABFT), the fault 
tolerance scheme is tailored to the algorithm performed. 
Most of the previous studies that compared various ABFT 
schemes considered only their error detection and 
correction capabiliti es. Some previous studies looked at the 
overhead in general but no previous work –as far as we 
know– compared different ABFT schemes considering 
performance as the main metric. In this work, we compare 
the performance of two ABFT error recovery schemes: 
recomputing vs. correction, for different error rates. We 
consider errors that happen during computation as well as 
those that happen during the error detection, location and 
correction process. The metrics we use are success ratio 
and completion time. Results show that multiple error 
correction using ABFT has worse performance than single 
error correction. They also show that error rate is an 
essential factor in making one scheme better than another in 
terms of performance. 

1. Introduction 
Errors can occur with different rates depending on the 

environments where computing systems are operated. For 
example, satellit es experience error rates based on their 
altitude and location. This variation makes different 
schemes more appropriate in different environments from a 
performance perspective. 

Performance is a critical metric for data processing 
applications. Errors influence the rate at which these 
applications run. The influence of errors on the 
performance of these systems depends on the recovery 
scheme applied. ABFT was invented for providing low-
overhead recovery in data processing applications. 

In this work we model ABFT for matrix operations 
considering transient faults in hardware. We consider three 
matrix operations that span a wide range of applications. 
These operations are matrix multiplication, LU 
decomposition and matrix inversion. We compare recovery 
by recomputing vs. ABFT correction in terms of 
performance for various error rates. 

The main contributions of this work are: 1) A 
performance-based comparison between error recovery by 
recomputing vs. error correction for various error rates, 2) 
The effect on performance of correction capabilit y (code 
distance) in ABFT is quantified by simulation, and 3) It is 
shown by simulation that multiple error correction has a 
negative impact on both completion time and success ratio. 
Definition 3.1: Success Ratio (SR) is defined as the fraction 
of iterations in which correct results were produced. An 
iteration corresponds to processing one frame of input data. 

Definition 3.2: Completion Time (CT) is defined as the 
amount of time it took the program to perform a fixed 
number of iterations. 

In Sec. 2, Algorithm-based fault tolerance is explained. 
In Sec. 3, we review the literature related to this work. 
Section 4 discusses our fault injection scheme. Section 5 
discusses and analyzes the simulation results. Section 6 is 
the summary and conclusions. 

2. Algorithm-Based Fault Tolerance 
ABFT can be tuned to provide the desired fault 

tolerance e.g., single error detection, single error correction, 
etc. For some computations, ABFT can be implemented 
with low overhead as shown in [1] and [2]. ABFT applies 
error control codes to the data such that errors are detected 
and in some cases located and corrected.  

An example of ABFT is to encode matrices by adding 
checksum rows or columns as discussed in  [3]. Checksum 
encoding is used to generate what is called a “checksum 
matrix” from the original matrix.  

Let A be an n×n matrix. Define d unique linearly 
independent n×1 weights vectors w(i) , i = 1, 2, … d, with 
elements w(i)

j, j = 1, 2, …, n. 
Definition 2.1: Define an n×(n+d) weights matrix W as 
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 Define a weighted row checksum matrix Arw= A × W, a 
weighted column checksum matrix Acw= WT × A, and a 
weighted full checksum matrix Afw = WT × A × W. 
 With a proper selection of weights in W, up to d errors 
can be detected and up to d/2 errors can be corrected in 
every column (row) of Acw (Arw) [4]. 

3. Previous Work 
Hudak et al., compared several software fault-tolerance 

techniques including ABFT [5]. The evaluation was based 
on error coverage for Launch Interceptor Program. The 
techniques were also ranked based on reliabilit y and cost. 
Prata et al. compared ABFT to “Result checking” for matrix 
operations [6]. The criteria considered for comparison were 
error coverage, overhead and ease of use. In [2], detection 
only was compared to detection and correction in terms of 
error coverage, memory size and execution time. 

The work presented here is unique in that it is designed 
to optimize the performance of an application executing in 
the presence of errors. We compare the performance of 
recovery by recomputing vs. ABFT correction considering 
success ratio and completion time.  
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4. Fault Injection 
The fault model assumed is a bit flip in memory, cache, 

a register or in ALU during a computation. Fault injection 
is performed by making a random change in a randomly 
chosen data entry of a given matrix before or after 
computation. Faults are injected at a high level (C code). 
We inject faults only in data entries because that is 
sufficient for the purpose of this work since we are 
comparing the performance of different recovery schemes 
that use the same detection mechanism. Faults can happen 
before, during or after the computation. The error arrival 
process is assumed to be Poisson with different rates.  

5. Simulation Results 
Three ABFT applications: matrix multiplication, LU 

decomposition and matrix inversion were implemented in 
C. Matrices of floating point numbers were generated 
randomly to be used as inputs to the algorithms. 

We used matrix sizes (10×10 – 50×50) and error rates 
of (10-9 – 10-3) per entry per second. To avoid round off 
errors in floating point computations we used a range of  
10-6 within which two numbers were considered equal. 

We show only two samples of the results due to space 
limitations. Figure 1 shows a comparison of success ratio 
using recovery by recomputing versus ABFT correction in 
Matrix Multiplication. Det/rec label corresponds to 
recomputing and cor(d=i) corresponds to correcting 2×i/2 
errors. The ABFT correction is done using various code 
distance (d) values. Increasing d means higher correction 
capabilit y. However, it also means that the correction 
scheme will t ake longer. This causes a higher possibilit y for 
errors hitting the computation during correction and these 
errors are mostly not correctable. 

The figure shows that recomputing has a relatively 
high success ratio. Higher values for d (3 and 4) resulted in 
considerably low success ratios. ABFT correction with d = 
1 gave the highest success ratio. 

Figure 2 shows a comparison of the completion time 
using recovery by recomputing vs. ABFT correction in 
matrix inversion. ABFT correction with d = 1, had the 
smallest completion time at low error rates. As the error rate 
increased, recomputing had the smallest completion time. 
Higher code distances (d ≥ 2) had high completion times. 

6. Summary and Conclusions 
ABFT was invented to provide fault tolerance with low 

performance overhead. So it is important to compare 
different ABFT schemes based on performance. We used 
success ratio and completion time as the performance 
metrics for comparison. It was shown by simulation that 
multiple error correction in ABFT is ineff icient in terms of 
both completion time and success ratio.  

Results showed that ABFT single error correction was 
the best for matrix multiplication in terms of success ratio 
and completion time. For LU decomposition, recomputing 
was better in completion time. In success ratio, recomputing 
was better at low error rates and correction was better at 
high error rates. For matrix inversion, correction was better 

in success ratio. In completion time, correction was better at 
low error rates and recomputing was better at high rates. 
 In conclusion, error rate had a direct impact in making 
on scheme favorable in terms of performance. Generally, 
correction was better at low error rates and recomputing 
was better at high error rates especially for computationally 
intensive algorithms. 
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Figure 1: Success ratio of  Recomputing vs. 
ABFT Correction with Different Code Distances 

Figure 2: Completion time of  Recomputing vs. 
ABFT Correction with Different Code Distances 
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