ALGORITHM-BASED FAULT TOLERANCE:
A PERFORMANCE PERSPECTIVE BASED ON ERROR RATE

Ahmad A. Al-Y amani, Nahmsuk Oh and Edward J. McCluskey
Center for Reliable Computing, Stanford University
{ayamani, nsoh, gm@crc.stanford.edu}

Abstract

In Algorithm-based fault tolerance (ABFT), the fault
tolerance scheme is tailored to the dgorithm performed.
Most of the previous gudies that compared various ABFT
schemes considered only their error detedion and
corredion capabiliti es. Some previous gudies looked at the
overhead in general but no previous work —as far as we
know— compared dfferent ABFT schemes considering
performance & the main metric. In this work, we compare
the performance of two ABFT error recovery schemes:
recomputing vs. corredion, for different error rates. We
consider errors that happen during computation as well as
those that happen during the aror detedion, locaion and
corredion process The metrics we use ae success mtio
and completion time. Results dow that multiple aror
corredion using ABFT has worse performance than single
error corredion. They also show that error rate is an
esential fador in making one scheme better than another in
terms of performance

1. Introduction

Errors can occur with different rates depending on the
environments where computing systems are operated. For
example, satellites experience eror rates based on their
atitude axd locdion. This variation makes different
schemes more gpropriate in different environments from a
performance perspedive.

Performance is a aiticd metric for data processng
applicaions. Errors influence the rate & which these
applicaions run. The influence of errors on the
performance of these systems depends on the recovery
scheme agplied. ABFT was invented for providing low-
overhead recovery in data processng applications.

In this work we model ABFT for matrix operations
considering transient faults in hardware. We mnsider three
matrix operations that span a wide range of applications.
These operations are matrix multiplicaion, LU
decomposition and matrix inversion. We compare reqovery
by recomputing w. ABFT corredion in terms of
performancefor various error rates.

The main contributions of this work are: 1) A
performance-based comparison between error recovery by
recomputing vs. error corredion for various error rates, 2)
The dfed on performance of corredion capability (code
distance) in ABFT is quantified by simulation, and 3) It is
shown by simulation that multiple aror corredion has a
negative impad on bath completion time and success m@tio.
Definition 31: SwcessRatio (SR) is defined as the fradion
of iterations in which corred results were produced. An
iteration corresponds to processng one frame of input data.

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

Definition 32: Completion Time (CT) is defined as the
amount of time it took the program to perform a fixed
number of iterations.

In Sec 2, Algorithm-based fault tolerance is explained.
In Sec 3, we review the literature related to this work.
Sedion 4 discusses our fault injedion scheme. Sedion 5
discusses and analyzes the simulation results. Sedion 6 is
the summary and conclusions.

2. Algorithm-Based Fault Tolerance

ABFT can be tuned to provide the desired fault
tolerance eg., single aror detedion, single aror corredion,
etc. For some computations, ABFT can be implemented
with low overhead as $rown in [1] and [2]. ABFT applies
error control codes to the data such that errors are deteced
and in some caes locaed and correded.

An example of ABFT is to encode matrices by adding
chedksum rows or columns as discussed in [3]. Chedksum
encoding is used to generate what is cdled a “chedksum
matrix” from the original matrix.

Let A be an nxn matrix. Define d unique linealy
independent nx1 weights vedors W , i = 1, 2, ... d, with
dementsw?,j=1,2, ..., n.

Definition 21: Define an nx(n+d) weights matrix W as

1 --- 1 Wl(l) e Wl(d) C
\N_D oo . L
A1 ow? o wWOF

Define aweighted row checksum metrix A= A x W, a
weighted column chedksum matrix Ay~ W' x A and a
weighted full chedksum matrix Ag, = W' x A x W.

With a proper seledion of weightsin W, up to d errors
can be deteded and up to [&/200errors can be crreded in
every column (row) of Aq, (Aw) [4].

3. PreviousWork

Hudak et al., compared several software fault-tolerance
techniques including ABFT [5]. The evaluation was based
on error coverage for Launch Interceptor Program. The
techniques were dso ranked based on reliability and cost.
Prata e al. compared ABFT to “Result cheding’ for matrix
operations [6]. The aiteria mnsidered for comparison were
error coverage, overheal and ease of use. In [2], detedion
only was compared to detedion and corredion in terms of
error coverage, memory size and exeaution time.

The work presented here is unique in that it is designed
to ogimize the performance of an applicaion exeauting in
the presence of errors. We mpare the performance of
recovery by recomputing vs. ABFT corredion considering
success ratio and completion time.

4. Fault Injection

The fault model assumed is a bit flip in memory, cade,
aregister or in ALU during a computation. Fault injedion
is performed by making a random change in a randomly
chosen data entry of a given matrix before or after
computation. Faults are injeced at a high level (C code).
We injea faults only in data entries becaise that is
sufficient for the purpose of this work since we ae
comparing the performance of different recovery schemes
that use the same detedion mecdhanism. Faults can happen
before, during or after the computation. The aror arrival
processis asaumed to be Poison with different rates.

5. Simulation Results

Three ABFT applicaions. matrix multiplication, LU
decomposition and matrix inversion were implemented in
C. Matrices of floating point numbers were generated
randomly to be used as inputs to the dgorithms.

We used matrix sizes (10x10 — 50x50) and error rates
of (10° — 103 per entry per second. To avoid round off
errors in floating point computations we used a range of
10°® within which two numbers were mnsidered equal.

We show only two samples of the results due to space
limitations. Figure 1 shows a mmparison of success ratio
using recovery by recomputing versus ABFT corredion in
Matrix Multiplication. Det/rec label corresponds to
recomputing and cor(d=i) corresponds to correding 2x[i/20]
errors. The ABFT corredion is done using various code
distance (d) values. Increasing d means higher corredion
cgoability. However, it dso means that the crredion
scheme will take longer. This causes a higher posshbility for
errors hitting the computation during corredion and these
errors are mostly not corredable.

The figure shows that recomputing hes a relatively
high success ratio. Higher values for d (3 and 4) resulted in
considerably low success ratios. ABFT corredion with d =
1 gave the highest successratio.

Figure 2 shows a mmparison of the completion time
using recvery by recomputing vs. ABFT corredion in
meatrix inversion. ABFT corredion with d = 1, had the
smallest completion time at low error rates. Asthe eror rate
incressed, recomputing hed the smallest completion time.
Higher code distances (d = 2) had high completion times.

6. Summary and Conclusions

ABFT was invented to provide fault tolerance with low
performance overhead. So it is important to compare
different ABFT schemes based on performance We used
success ratio and completion time as the performance
metrics for comparison. It was $own by simulation that
multiple eror corredion in ABFT isinefficient in terms of
both completion time and successratio.

Results dowed that ABFT single eror corredion was
the best for matrix multiplication in terms of successratio
and completion time. For LU decmposition, recomputing
was better in completion time. In successratio, recomputing
was better at low error rates and corredion was better at
high error rates. For matrix inversion, corredion was better

0 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

Success Ratio

Completion Time(sec.)

in successratio. In completion time, corredion was better at
low error rates and recomputing was better at high rates.

In conclusion, error rate had adired impad in making
on scheme favorable in terms of performance Generally,
corredion was better at low error rates and recomputing
was better at high error rates espedally for computationally
intensive dgorithms.

Acknowledgement

Thiswork was supported in part by the National Aeronautics and Space
Administration and administered through the Jet Propulsion Laboratory,
California Institute of Technology under Contrad No. 1216777

Refer ences

[1] K. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations’, IEEE Transactions on Computers, Val. C-33, No. 6,
pp. 518528 June 1984

[2] R. K. Acree Nasr Ullah, A. Karig, J. T. Rahmeh & J. A. Abraham, “An
Object-Oriented Approach for Implementing Algorithm-Based Fault
Tolerance”, 12" Annual International Phoenix Computers and
Communications Conference , pp. 210216, Mar. 93.

[3] Paul S. Dwyer, Linear Computations, John Wiley & Sons, 1951

[4] J. Jou and J. Abraham, “Fault-Tolerant Matrix Arithmetic and Signal
Procesdng on Highly Concurrent Computing Structures’, Proc. |EEE, vol.
74, pp. 732741, May 1986

[5] J. Hudak, B. Suh, D. Siewiorek and Z. Segdl, “Evauation &
Comparison of Fault-Tolerant Software Techniques’, IEEE Transactions
on Reliability, Vol. 42, No. 2, June 1993

[6] P. Prata and J. Silva, “Algorithm Based Fault Tolerance Versus Result-
Checking for Matrix Computations’, International Symposium on Fault
Tolerant Computing FTCS-29, pp. 4—11, Jun 99

.

09
—— det/rec
B cor(c=l)
—A—oor(d=2)
—&—oor(d=3)
(

08 \ \
07 T T Ay
100E-05 10004 100E03

100E-06
Error Rete
Figure 1: Successratio of Recomputing vs.
ABFT Correction with Different Code Distances

100E06 10004 100E3 10002
Error Rete

Figure 2: Completion time of Recomputing vs.
ABFT Correction with Different Code Distances

