
 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

ALGORITHM-BASED FAULT TOLERANCE:
A PERFORMANCE PERSPECTIVE BASED ON ERROR RATE

Ahmad A. Al-Yamani, Nahmsuk Oh and Edward J. McCluskey

Center for Reliable Computing, Stanford University
{ alyamani, nsoh, ejm@crc.stanford.edu}

Abstract
In Algorithm-based fault tolerance (ABFT), the fault
tolerance scheme is tailored to the algorithm performed.
Most of the previous studies that compared various ABFT
schemes considered only their error detection and
correction capabiliti es. Some previous studies looked at the
overhead in general but no previous work –as far as we
know– compared different ABFT schemes considering
performance as the main metric. In this work, we compare
the performance of two ABFT error recovery schemes:
recomputing vs. correction, for different error rates. We
consider errors that happen during computation as well as
those that happen during the error detection, location and
correction process. The metrics we use are success ratio
and completion time. Results show that multiple error
correction using ABFT has worse performance than single
error correction. They also show that error rate is an
essential factor in making one scheme better than another in
terms of performance.

1. Introduction
Errors can occur with different rates depending on the

environments where computing systems are operated. For
example, satellit es experience error rates based on their
altitude and location. This variation makes different
schemes more appropriate in different environments from a
performance perspective.

Performance is a critical metric for data processing
applications. Errors influence the rate at which these
applications run. The influence of errors on the
performance of these systems depends on the recovery
scheme applied. ABFT was invented for providing low-
overhead recovery in data processing applications.

In this work we model ABFT for matrix operations
considering transient faults in hardware. We consider three
matrix operations that span a wide range of applications.
These operations are matrix multiplication, LU
decomposition and matrix inversion. We compare recovery
by recomputing vs. ABFT correction in terms of
performance for various error rates.

The main contributions of this work are: 1) A
performance-based comparison between error recovery by
recomputing vs. error correction for various error rates, 2)
The effect on performance of correction capabilit y (code
distance) in ABFT is quantified by simulation, and 3) It is
shown by simulation that multiple error correction has a
negative impact on both completion time and success ratio.
Definition 3.1: Success Ratio (SR) is defined as the fraction
of iterations in which correct results were produced. An
iteration corresponds to processing one frame of input data.

Definition 3.2: Completion Time (CT) is defined as the
amount of time it took the program to perform a fixed
number of iterations.

In Sec. 2, Algorithm-based fault tolerance is explained.
In Sec. 3, we review the literature related to this work.
Section 4 discusses our fault injection scheme. Section 5
discusses and analyzes the simulation results. Section 6 is
the summary and conclusions.

2. Algorithm-Based Fault Tolerance
ABFT can be tuned to provide the desired fault

tolerance e.g., single error detection, single error correction,
etc. For some computations, ABFT can be implemented
with low overhead as shown in [1] and [2]. ABFT applies
error control codes to the data such that errors are detected
and in some cases located and corrected.

An example of ABFT is to encode matrices by adding
checksum rows or columns as discussed in [3]. Checksum
encoding is used to generate what is called a “checksum
matrix” from the original matrix.

Let A be an n×n matrix. Define d unique linearly
independent n×1 weights vectors w(i) , i = 1, 2, … d, with
elements w(i)

j, j = 1, 2, …, n.
Definition 2.1: Define an n×(n+d) weights matrix W as
















=

)()1(

)(
1

)1(
1

11

11

d
nn

d

ww

ww

W

��

������

��

 Define a weighted row checksum matrix Arw= A × W, a
weighted column checksum matrix Acw= WT × A, and a
weighted full checksum matrix Afw = WT × A × W.
 With a proper selection of weights in W, up to d errors
can be detected and up to d/2 errors can be corrected in
every column (row) of Acw (Arw) [4].

3. Previous Work
Hudak et al., compared several software fault-tolerance

techniques including ABFT [5]. The evaluation was based
on error coverage for Launch Interceptor Program. The
techniques were also ranked based on reliabilit y and cost.
Prata et al. compared ABFT to “Result checking” for matrix
operations [6]. The criteria considered for comparison were
error coverage, overhead and ease of use. In [2], detection
only was compared to detection and correction in terms of
error coverage, memory size and execution time.

The work presented here is unique in that it is designed
to optimize the performance of an application executing in
the presence of errors. We compare the performance of
recovery by recomputing vs. ABFT correction considering
success ratio and completion time.

 2001, A. Al-Yamani, N. Oh and E. J. McCluskey

4. Fault Injection
The fault model assumed is a bit flip in memory, cache,

a register or in ALU during a computation. Fault injection
is performed by making a random change in a randomly
chosen data entry of a given matrix before or after
computation. Faults are injected at a high level (C code).
We inject faults only in data entries because that is
sufficient for the purpose of this work since we are
comparing the performance of different recovery schemes
that use the same detection mechanism. Faults can happen
before, during or after the computation. The error arrival
process is assumed to be Poisson with different rates.

5. Simulation Results
Three ABFT applications: matrix multiplication, LU

decomposition and matrix inversion were implemented in
C. Matrices of floating point numbers were generated
randomly to be used as inputs to the algorithms.

We used matrix sizes (10×10 – 50×50) and error rates
of (10-9 – 10-3) per entry per second. To avoid round off
errors in floating point computations we used a range of
10-6 within which two numbers were considered equal.

We show only two samples of the results due to space
limitations. Figure 1 shows a comparison of success ratio
using recovery by recomputing versus ABFT correction in
Matrix Multiplication. Det/rec label corresponds to
recomputing and cor(d=i) corresponds to correcting 2×i/2
errors. The ABFT correction is done using various code
distance (d) values. Increasing d means higher correction
capabilit y. However, it also means that the correction
scheme will t ake longer. This causes a higher possibilit y for
errors hitting the computation during correction and these
errors are mostly not correctable.

The figure shows that recomputing has a relatively
high success ratio. Higher values for d (3 and 4) resulted in
considerably low success ratios. ABFT correction with d =
1 gave the highest success ratio.

Figure 2 shows a comparison of the completion time
using recovery by recomputing vs. ABFT correction in
matrix inversion. ABFT correction with d = 1, had the
smallest completion time at low error rates. As the error rate
increased, recomputing had the smallest completion time.
Higher code distances (d ≥ 2) had high completion times.

6. Summary and Conclusions
ABFT was invented to provide fault tolerance with low

performance overhead. So it is important to compare
different ABFT schemes based on performance. We used
success ratio and completion time as the performance
metrics for comparison. It was shown by simulation that
multiple error correction in ABFT is ineff icient in terms of
both completion time and success ratio.

Results showed that ABFT single error correction was
the best for matrix multiplication in terms of success ratio
and completion time. For LU decomposition, recomputing
was better in completion time. In success ratio, recomputing
was better at low error rates and correction was better at
high error rates. For matrix inversion, correction was better

in success ratio. In completion time, correction was better at
low error rates and recomputing was better at high rates.
 In conclusion, error rate had a direct impact in making
on scheme favorable in terms of performance. Generally,
correction was better at low error rates and recomputing
was better at high error rates especially for computationally
intensive algorithms.

Acknowledgement
This work was supported in part by the National Aeronautics and Space
Administration and administered through the Jet Propulsion Laboratory,
California Institute of Technology under Contract No. 1216777.

References
[1] K. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations” , IEEE Transactions on Computers, Vol. C-33, No. 6,
pp. 518-528, June 1984.
[2] R. K. Acree, Nasr Ullah, A. Karia, J. T. Rahmeh & J. A. Abraham, “An
Object-Oriented Approach for Implementing Algorithm-Based Fault
Tolerance” , 12th Annual International Phoenix Computers and
Communications Conference , pp. 210-216, Mar. 93.
[3] Paul S. Dwyer, Linear Computations, John Wiley & Sons, 1951.
[4] J. Jou and J. Abraham, “Fault-Tolerant Matrix Arithmetic and Signal
Processing on Highly Concurrent Computing Structures” , Proc. IEEE, vol.
74, pp. 732-741, May 1986.
[5] J. Hudak, B. Suh, D. Siewiorek and Z. Segall , “Evaluation &
Comparison of Fault-Tolerant Software Techniques” , IEEE Transactions
on Reliability, Vol. 42, No. 2, June 1993.
[6] P. Prata and J. Silva, “Algorithm Based Fault Tolerance Versus Result-
Checking for Matrix Computations” , International Symposium on Fault
Tolerant Computing FTCS-29, pp. 4 – 11, Jun 99.

Figure 1: Success ratio of Recomputing vs.
ABFT Correction with Different Code Distances

Figure 2: Completion time of Recomputing vs.
ABFT Correction with Different Code Distances

0.7

0.8

0.9

1

1.00E-06 1.00E-05 1.00E-04 1.00E-03

Error Rate

Su
cc

es
s

R
at

io

det/rec

cor(d=1)

cor(d=2)

cor(d=3)

cor(d=4)

50

70

90

110

130

150

1.00E-05 1.00E-04 1.00E-03 1.00E-02

Error Rate

C
om

pl
et

io
n

T
im

e(
se

c.
)

det/rec

cor(d=1)

cor(d=2)

cor(d=3)

cor(d=4)

