

BUILT-IN RESEEDING FOR SERIAL BIST
Ahmad A. Al-Yamani and Edward J. McCluskey

Center for Reliable Computing
Stanford University, Stanford, CA

{aaa, ejm}@crc.stanford.edu

Abstract
Reseeding is used to improve fault coverage in BIST pseudo-
random testing. Most of the work done on reseeding is based
on storing the seeds in an external tester. Besides its high cost,
testing using automatic test equipment (ATE) makes it hard to
test the circuit while in the system. In this paper, we present a
technique for built-in reseeding. Our technique requires no
storage for the seeds. The seeds are encoded in hardware. The
seeds we use are deterministic so 100% fault coverage can be
achieved. Our technique causes no performance overhead and
does not change the original circuit under test. Also, the
technique we present is applicable for transition faults as well
as single-stuck-at faults. Built-in reseeding is based on
expanding every seed to as many ATPG patterns as possible.
This is different from many existing reseeding techniques that
expand every seed into a single ATPG pattern. This paper
presents the built-in reseeding algorithm together with a
hardware synthesis algorithm and implementation.

1. Introduction
An advantage of built-in self-test (BIST) is its low cost

compared to external testing using automatic test equipment
(ATE). In BIST, on-chip circuitry is included to provide test
vectors and to analyze output responses. One possible
approach for BIST is pseudo-random testing using a linear
feedback shift register (LFSR) [McCluskey 85]. Among the
other advantages of BIST is its applicability while the circuit is
in the system.

Many digital circuits contain random-pattern-resistant
(r.p.r.) faults that limit the coverage of pseudo-random testing
[Eichelberger 83]. The r.p.r. faults are faults with low
detectability (few patterns detect them). Several techniques
have been suggested for enhancing the fault coverage achieved
with BIST. These techniques can be classified as: (1)
Modifying the circuit under test (CUT) by test point insertion
[Eichelberger 83, Touba 96] or by redesigning the CUT, (2)
Weighted pseudo-random patterns, where the random patterns
are biased using extra logic to increase the probability of
detecting r.p.r. faults [Eichelberger 89, Wunderlich 90] and (3)
Mixed-mode testing where the circuit is tested in two phases.
In the first phase, pseudo-random patterns are applied. In the
second phase, deterministic patterns are applied to target the
undetected faults [Koenemann 91, Hellebrand 95, Touba 00].
We present a mixed mode technique based on inserting
deterministic patterns between the pseudo-random patterns.

Modifying the CUT is often not desirable because of
performance issues or intellectual property reasons. Weighted
pseudo-random sequences require multiple weight sets that are
typically stored on chip. Mixed mode testing is done in several
ways; one way is to apply the deterministic patterns from an
external tester or store them in an on-chip ROM. Additional

circuitry is required to apply the patterns in the ROM to the
circuit under test. Instead of storing patterns, seeds can be
stored on the tester or in the on-chip ROM. These seeds are
transferred into the LFSR and then expanded into the scan
chains. This technique does not eliminate the need for the
circuitry that transfers the seeds from the ROM to the LFSR.

Another technique for mixed-mode testing uses mapping
logic [Touba 95]. The strategy is to identify patterns in the
pseudorandom sequence that don’t detect any new faults and
map them by hardware into deterministic patterns.

In this paper, we present a technique that combines
mapping logic and reseeding (loading the LFSR with a new
seed). Our technique uses a simple circuit to identify the states
at which the LFSR is to be reseeded. It uses minimal
additional hardware to choose the new seed. Our technique
utilizes the LFSR flip-flops for storing the seeds. The output of
the circuit that detects when to reseed is used to pick the new
seed by inverting the flip-flops in which the seed is different
from the current contents of the LFSR.

Touba’s mapping logic alters the outputs of the pseudo-
random pattern generator (LFSR) to insert deterministic
patterns into the test set. On the other hand, our technique
alters the contents of the LFSR to insert seeds, which produce
the deterministic patterns.

Our technique can achieve 100% fault coverage while
eliminating the need for external testing or for a ROM to store
the seeds. Furthermore, it requires fewer seeds to be encoded
compared to previous work. Actually, at best, our technique
causes an order of magnitude reduction in the number of seeds
to be encoded compared to previous work and even in its
worst case it needs fewer seeds than previous work. With a
small modification, our technique can be applied for transition
faults rather than single stuck faults. Even if it’s more
desirable to apply the deterministic patterns externally than to
add the mapping logic, our technique is still applicable and it
reduces the seed storage because of the pseudorandom patterns
applied between the seeds. The price for this storage reduction
is paid in test length.

Our contributions in this paper are summarized as
follows: (1) A reseeding technique that eliminates completely
the need for external pattern storage or an on-chip ROM. It’s
based on encoding the seeds in hardware and using special
hardware for the LFSR. The technique can be used for both
transition faults as well as single-stuck-at faults. (2) A
hardware implementation for the given technique. (3) A
reseeding algorithm based on the hardware implementation
explained in Sec. 4. The algorithm allows the user to trade off
test length for hardware overhead.

In Sec. 2 of this paper, we review the related literature. In
Sec. 3, we explain the reseeding circuitry implementation.
Section 4 discusses the reseeding algorithm. Section 5 shows
the simulation results and Sec. 6 concludes the paper.

2. Related work
In serial BIST (aka test per scan), deterministic patterns

are encoded into smaller vectors (aka seeds) that are loaded
into the LFSR and then expanded into the desired patterns in
the scan chains. The patterns are encoded into seeds by solving
a linear system of equations, which is an algebraic
representation of the linear expansion of the LFSR into the
scan chain flip-flops. There are some linear dependencies
between some flip-flops of the scan chain. Due to these
dependencies, solving the linear system of equations may not
always be possible.

2.1 Seed calculation and seed storage
Based on the statistical treatment of the linear

dependencies in [Bardell 87], Konemann presented a
technique for coding test patterns into LFSRs of size Smax+20,
where Smax is the maximum number of specified bits in the
ATPG patterns. By adding 20 bits to Smax as the size of the
LFSR, the probability of linear dependence drops to 1 in a
million [Koenemann 91].

[Rajski 98] presented a reseeding-based technique that
improves the encoding efficiency by using variable-length
seeds together with a multiple polynomial LFSR. The
technique reuses part of the scan chain flip-flops in expanding
the seeds.

In [Krishna 01], a new form of reseeding was described
for high encoding efficiency. By making use of the degrees of
freedom in solving the linear system of equations the paper
achieves higher encoding efficiency than static reseeding.

The technique presented in this paper encodes the seeds
in hardware instead of storing them in a ROM or in the tester.
Other than the circuit needed to detect when to reseed,
minimal hardware is needed to load the desired seeds. Also,
our technique is orthogonal to all of the above techniques; i.e.,
it can be combined with partial dynamic reseeding for a high
encoding efficiency or with Rajski’s technique that utilizes
part of the scan chain.

2.2 Hardware-based reseeding

[Savir 90] presented a reseeding scheme that requires
having shadow flip-flops for the LFSR flips-flops. The shadow
flip-flops contain the next seed. These shadow flip-flops are
loaded with the XOR of the old shadow contents and the
original LFSR flip-flops contents. This way, the new seed is
expected to be far in the sequence from the current contents of
the LFSR. Kim presented a method for generating non-
successive pseudo-random test patterns by cascading the
LFSR with the scan chain and including a feedback from the
scan-out signal into the LFSR [Kim 96]. In [Crouch 95], a self
re-seeding LFSR was presented. Again the LFSR is loaded
with a random seed every time a pattern is repeated in part of
the LFSR.

The above schemes have the advantage of diversity of the
sequences from which the patterns are drawn. They also have
the advantage of not requiring seed storage. However, they use
seeds that don’t particularly target undetected faults. Our
technique is based on deterministic seeds which expand into
ATPG patterns so 100% fault coverage can be achieved. We
pay the price in hardware overhead.

2.3 Mapping logic
Touba and McCluskey came up with an innovative

approach for applying deterministic patterns through mapping
logic [Touba 95]. In their technique, random patterns that
don’t detect r.p.r. faults are mapped to ATPG generated cubes
through combinational logic. The mapping is performed in two
phases, the source patterns are identified in the first phase, and
the ATPG cubes are loaded in the second phase. Several
iterative minimization heuristics are applied to reduce the area
overhead of the mapping logic.

Our technique is a generalization of mapping logic. It has
the following advantages: (1) Mapping logic needs hardware
for all patterns. In built-in reseeding the LFSR runs in
autonomous mode after loading every seed detecting more
r.p.r. faults without having to perform more mappings.
Because of this, some patterns may not be required. (2) In
mapping logic, we need logic for detecting the pattern to be
mapped and more logic to perform the mapping. On the other
hand, in our technique we only need the logic that detects the
patterns that need to be mapped. Enforcing the new values in
the LFSR is done utilizing the current contents of the flip-flops
of the LFSR.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Reseeding Logic

(a)

(b)

CLK

M
U

X

M
U

X

M
U

X

M
U

X

Figure 1: Reseeding circuit connection to LFSR:

(a) A standard 4-stage LFSR (b) 4-stage LFSR with
reseeding circuit.

3. Reseeding circuitry implementation
The operation of the reseeding circuit is as follows: the

LFSR starts running in autonomous mode for some time
according to the algorithm described in Sec. 4. Once it is time
for reseeding, a seed is loaded into the LFSR, which then goes
back to the autonomous mode and so on and so forth until the
desired coverage is achieved. The new seed is loaded by
putting the LFSR in the state that precedes the seed value, so
that at the next clock pulse, the new seed is in the LFSR.

Figure 1(b) shows the structure of the LFSR and its
interaction with the reseeding circuit. For our technique, we
use muxed flip-flops as shown in the figure. These flip-flops
are just like the scan chain flip-flops. By activating the select
line of a given mux, the logic value in the corresponding LFSR
stage is inverted.

Reseeding Circuit

End of Sequence (EOS) = c6 = 0101
Seed = 0100 = c12
Select Lines Activated = (c6) XOR (c11)
 = 0101 XOR 1001
 = 1100

=> Select lines of Q1 and Q2 activated

Cycle Q1 Q2 Q3 Q4 Cycle Q1 Q2 Q3 Q4
0 1 0 0 0 8 1 1 0 1
1 1 1 0 0 9 0 1 1 0
2 1 1 1 0 10 0 0 1 1
3 1 1 1 1 11 1 0 0 1
4 0 1 1 1 12 0 1 0 0
5 1 0 1 1 13 0 0 1 0
6 0 1 0 1 14 0 0 0 1
7 1 0 1 0 15 1 0 0 0

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

(b)

M
U

X

M
U

X

M
U

X

M
U

X

(a)

Figure 2: Example reseeding circuit (a) Select lines computation (b) Hardware implementation.

Definition: The end of sequence (EOS) contents are the

values of the LFSR flip-flops before reseeding. The output of
the reseeding circuit activates the select lines of the muxes to
invert certain stages of the LFSR such that the desired seed is
loaded in the next clock cycle.

As seen in the figure, the only modification to the LFSR
compared to a regular LFSR is that the LFSR flip-flops are
replaced by muxed flip-flops just like the scan chain.

Let’s turn our attention to the reseeding circuit by looking
at the following example. Figure 2 is an example using a 4-
stage self-reseeding LFSR (LFSR with reseeding logic) with a
primitive polynomial. The table in part (a) shows the full
sequence of the regular LFSR. Assume that we want to reseed
after the 6th cycle (c6). The reseeding circuit needs to be an
AND gate that takes as inputs the contents of the LFSR at c6.
So in the example the input to the reseeding AND is

4321 QQQQ . All the cycles that are not part of the desired
sequence can be used to minimize the reseeding circuit.

As an example, let the seed be 0100 (c12); we can easily
calculate c11 given the polynomial of the LFSR (c11 = 1001).
The reason we calculate c11 and not c12 is because we want
the seed to be loaded into the LFSR in the next clock cycle.
XORing c6 with c11 yields 1100 which means that the output
of the reseeding AND should activate the select lines of the
MUXes of Q1 and Q2. The truth table for the reseeding circuit
is shown in Table 1, where Qi comes from the output of the ith
stage and Sj is the select line of the mux of the jth stage. The
patterns between c6 and c11 will not occur so they are don’t
cares. All the other patterns don’t activate any muxes.

The resulting circuit for the example in Figure 2 is a 3-
input AND as shown in the figure.

As more seeds are required, every select line will be a
function of the end-of-sequence patterns that will activate it to
complement the contents of its corresponding flip-flop. We
can then optimize the circuit for that select line and multiple-
output optimization can be done for all select lines.

Table 1: Table of Combinations for the Reseeding

Circuit Example
Q1Q2Q3Q4 S1S2S3S4 Q1Q2Q3Q4 S1S2S3S4
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
0 1 0 1
1 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
d d d d

1 1 0 1
0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

d d d d
d d d d
d d d d
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
d d d d

There are two ways to apply transition fault test sets to

circuits with scan chains. One way is to use pairs of clock
pulses (launch on capture). Once the 1st pattern is loaded into
the scan chain, a clock pulse is applied so the response of the
combinational logic to the 1st pattern is latched into the flip-
flops. Another clock pulse is then applied such that the
response of the combinational logic to the 1st pattern is used as
the 2nd pattern in the transition fault pair. The other way is to
load the scan chain with the two successive patterns (launch on
shift). Once the first pattern is applied, the contents of the scan
chain are shifted, the 2nd pattern is applied and the results are
captured in the scan chain to be shifted out.

We use the first technique (launch on capture) for
transition faults. The reseeding circuit only needs to load the
LFSR with the 1st pattern because the 2nd pattern is the
response of the logic to the 1st pattern. The reseeding circuit is
synthesized such that it changes the contents of the LFSR from
the current values to the 1st pattern in the transition fault
pattern pair. This means that our technique requires no extra
hardware to apply it to transition faults. Although pairs of 2
vectors are required for transition faults, only the first pattern
needs to be encoded in hardware because the 2nd pattern is the
circuit’s response to the 1st pattern.

Figure 3 shows where the reseeding circuit fits in a
system level view of a circuit with an LBIST controller. The
pattern counter is part of the LBIST controller and it is used to
count the patterns applied to the circuit under test (CUT).

Although the experiments are given for a single chain per
circuit, the technique we present is directly applicable with
multiple chains with any phase shifters.

In a BIST environment, where the LFSR is known in
advance and the initial seed and test length are also known, the
reseeding circuit may take its inputs from the pattern counter
instead of the LFSR contents. The dashed line in Figure 3
corresponds to the reseeding circuit taking its inputs from the
pattern counter. If a set of test length TL is applied to the
circuit the pattern counter will be of size log2(TL). If the size
of the pattern counter is much smaller than the LFSR, this can
lead to large reduction in the complexity of the reseeding
circuit because the number of inputs is reduced.

LBIST Controller

Combinational Logic
M
I
S
R

Pattern Counter
Control
Signal

Generator

SE & TM

PIs POs

R
eseeding C

ircuit

L
F
S
R

Scan Chain(s)

Figure 3: Reseeding circuit in a system view of BIST

environment.

4. Reseeding algorithm
The algorithm we present is based on the following

strategies: (1) Generate ATPG patterns for faults that were not
detected with pseudo-random patterns and calculate the seeds
for these patterns, (2) When a seed is loaded into the LFSR, let
the LFSR run in autonomous mode for sometime because
there is a chance that some pseudo-random patterns will drop
more faults so that some of the ATPG patterns are not needed.
This may not be a wise idea if the seeds are applied from a
tester because applying the pseudorandom patterns after every
deterministic pattern takes extra time on the tester where test
time may be expensive. On the other hand, if the seeds are
stored or coded on-chip, as it is the case in this work, then it is
definitely worth it to minimize the number of seeds that need
to be loaded for the same coverage. This will directly
minimize the area overhead on the chip, (3) As long as the
pseudo-random patterns are detecting more faults, the LFSR
should continue in pseudorandom mode. When the pseudo-
random patterns become ineffective, the LFSR should be
loaded with a new pattern. How to quantify the effectiveness
of pseudo-random patterns? The answer is in the next
paragraphs.

Definition: coverage improvement threshold (CIT) is the
improvement in fault coverage required by the algorithm to
continue applying pseudorandom patterns. It’s a parameter to

quantify the effectiveness of pseudorandom patterns. As long
as applying more pseudo-random patterns improves the
coverage by at least CIT%, the pseudo-random patterns will be
considered effective. When the improvement falls below
CIT%, the pseudo-random patterns are considered ineffective.
We need to determine how many patterns are simulated before
measuring the improvement in coverage. Definition: We
define the step size as the number of patterns simulated before
measuring the improvement in coverage. In our simulations,
we used different values for the step size.

The only user-specified parameters for this algorithm are
the coverage improvement threshold (CIT) and the step size.
At one extreme, choosing a very small CIT, means that the
user prefers to stick to pseudo-random patterns as long as they
have any improvement in the coverage. This in turn means the
user wants low hardware overhead for the reseeding circuit. In
return for that, the user is willing to have a long test length. At
the other extreme, if the user specifies a very high CIT, it
means that he has enough area on the chip for the reseeding
circuit.

Reseeding based on CIT is one way to choose when to
reseed the LFSR. Many other strategies can be used for
selecting the reseeding cycles. One way is to choose a fixed
length for running the LFSR in autonomous mode after the
seed is loaded.

In a sense, our built-in reseeding algorithm is a
generalization of mapping logic. If we choose not to continue
running the LFSR in pseudorandom mode after reseeding and
we choose to alter the LFSR output of the LFSR contents, then
our technique becomes similar to mapping logic. We chose to
expand the seeds into many patterns since this should reduce
the number of seeds to be loaded and accordingly reduce the
area of the reseeding circuit. We also chose to alter the
contents of the LFSR to enable a different sequence of
pseudorandom patterns to drop more faults.

For some circuits, all we need to catch the undetected
faults is to take the LFSR to another location in the pattern
space. In that case, one or two seeds are enough. For other
circuits, the undetected faults require many seeds to be loaded.
In that case, our technique will require many seeds and have a
long test length.

In case of transition faults, the only change to the
algorithm is that fault simulation and ATPG should be done
for transition faults instead of SSFs.

5. Simulation results
We performed our experiments on some ISCAS 89

benchmarks. The characteristics of the benchmarks we used
are shown in Table 2. The table shows the number of primary
inputs, primary outputs and flip-flops in the circuits. It also
shows the size of the LFSR used. The last column shows the
cell-area of the circuits in LSI library cells area units. The
library used for technology mapping is LSI Logic G.Flex
library, which is a 0.13 µ technology library.

5.1 Comparison with previous work
We performed some simulation experiments to compare

our built-in reseeding with previous work. Most of the
previous work assumes one seed per pattern. In mapping logic,
hardware is needed to map each pattern but no pattern or seed

storage is needed. From here on, “previous work” refers to all
work that assumes one seed per pattern.

Table 2: ISCAS 89 CUTs Used in The Experiments.

Circuit
Name

PIs POs Scan
Chain
Size

LFSR
Size

Area

s1423 17 5 74 50 4,531
s1488 8 19 6 6 3,555
s1494 8 19 6 6 3,563
s5378 35 49 179 61 14,376
s9234 36 39 211 80 25,840

s13207 62 152 638 45 44,255
s15850 77 150 534 150 48,494
s35932 35 320 1728 60 106,198
s38417 28 106 1636 200 120,180
s38584 38 304 1426 200 115,855

We compare the number of seeds that need to be encoded

if our built-in reseeding technique is used and the number of
seeds that need to be stored or mapped if previous techniques
are used. The number of seeds determines the area of the
reseeding or mapping circuit. Since further area minimization
heuristics can be applied to all techniques, it’s fair to compare
them in terms of the number of seeds that need to be mapped
or stored for the same coverage. This comparison can be done
for all possible combinations of coverage improvement
threshold (CIT) and step size, see Sec. 4. Since built-in
reseeding may require longer test length than previous
techniques, it’s fair to show the test length in the comparison.
Why should we tolerate this increase in test length? (1) The
area is a scarce resource in BIST. (2) The effect of increasing
the test length is not as severe with BIST as it is with external
testing because BIST is much faster than external testing. (3)
Increasing the test length increases the number of pseudo-
random patterns that are likely to be effective in catching
unmodeled defects. (4) The increase in test length we have is
much smaller than that if only pseudorandom patterns were
used. The user can minimize the test length for area overhead.

Table 3 shows a comparison of previous techniques and
our reseeding technique. The table is for 100% single-stuck-at
fault coverage, 1% CIT (coverage improvement threshold) and
1024 patterns as a step size. In its best case, built-in reseeding
reduces the number of seeds required for 100% coverage by an
order of magnitude and increases the test length by only a
factor of 1.7 compared to using one seed per pattern.

The table shows that there are many cases where
reseeding offers a considerable improvement in the number of
patterns required to test the circuit and at the same time
doesn’t cause a large increase in the test length.

5.2 Area overhead and test length for SSFs
In this section we present the area overhead of our built-

in reseeding technique using the SSF model. Table 4 shows
the area overhead of the reseeding circuits for the benchmarks
we used. The reseeding circuits given were designed based on
100% SSF fault coverage. The area overhead given in the table
is the minimum area overhead we could achieve for 100%
coverage after trying multiple CITs and step sizes.

For most of the circuits, the area overhead ranged from
0.05% to 4%. In a few cases we had a large reseeding circuit.

The minimum area overhead was achieved with different
values for CIT for different circuits. This is due to the fact that
the number of seeds required to be loaded is highly dependent
on the order in which seeds are picked. Our algorithm picks
the seeds with the objective of minimizing the area overhead
so this might have different effects on the test length.

An important conclusion from the above results is that we
need an algorithm to efficiently find the best order for loading
the seeds such that the area of the reseeding circuit is
minimized. This is investigated in a different paper and results
are available in [Alyamani 03].

5.3 Area overhead and test length for transition faults
In this section we present the area overhead of our built-

in reseeding technique using the transition fault model. The
reseeding circuits given were designed based on the maximum
achievable transition fault coverage. For most of the cases, the
area overhead ranged from 0.2% to 5% as shown in Table 5.

Table 3: Comparison of Built-In Reseeding and Previous Work Encoding One Seed per Pattern.

Number of seeds to be encoded Test Length
Circuit One seed

per pattern
Built-in

reseeding
%Reduction One seed per

pattern
Built-in

reseeding
Degradation

factor
s1423 7 4 42.9 2,000 8,160 4.1
s1488 4 1 75.0 3,072 4,096 1.3
s1494 4 1 75.0 3,072 4,096 1.3
s5378 60 20 66.7 3,072 27,648 9.0
s9234 93 62 33.3 5,120 76,800 15.0

s13207 121 26 78.5 5,120 60,416 11.8
s15850 41 38 7.3 4,096 45,056 11.0
s35932 18 1 94.4 3,072 5,120 1.7
s38417 78 62 20.5 5,120 89,088 17.4
s38584 107 36 66.4 4,096 76,800 18.8

Table 4: Area Overhead and Test Length For Built-In
Reseeding (SSFs)

Circuit Area Reseeding
Area

% Area
Overhead

TL

s1423 4,531 113.2 2.5 8,160
s1488 3,555 12 0.3 6,549
s1494 3,563 12 0.3 6,560
s5378 14,376 462 3.2 928
s9234 25,840 3566 13.8 4,544

s13207 44,255 122 0.3 1,600
s15850 48,494 1988 4.1 2,432
s35932 106,198 52 0.05 6,144
s38417 120,180 9418 7.8 6,016
s38584 115,855 1760 1.5 61,440

In most cases, the minimum area overhead is achieved

with different step sizes. This is again due to the fact that the
number of seeds that need to be loaded is highly dependent on
the order in which seeds are picked.

In general the area overhead of the built-in reseeding
circuit for transition faults was close to that for SSFs. The
reason is that we only encode the 1st patterns of the transitions
patterns pairs in the reseeding circuit. We measure the test
length of transition fault test sets in pairs of patterns.

Table 5: Area Overhead and Test Length For Built-In
Reseeding (Transition Faults)

Circuit Area Reseeding
Area

% Area
Overhead

TL

s1423 4,531 205.2 4.5 18,432
s1488 3,555 35.2 1.0 3,072
s1494 3,563 45.2 1.3 3,072
s5378 14,376 855.2 5.9 7,680
s9234 25,840 3937.6 15.2 15,904

s13207 44,255 225.2 0.5 7,168
s15850 48,494 2513.6 5.2 7,424
s35932 106,198 174 0.2 1,376
s38417 120,180 3022.8 2.5 34,816
s38584 115,855 2668.4 2.3 33,792

6. Summary and Conclusions
We presented a built-in reseeding scheme based on

encoding the seeds in an on-chip reseeding circuit. 100% fault
coverage can be achieved with our technique without any
external testing. Our built-in reseeding scheme allows the
designer to trade-off area overhead for test length in an
optimized way.

Our technique uses special hardware for the LFSR such
that the reseeding circuitry area overhead is minimized. Also,
the technique we presented is directly applicable to the
transition fault model. The simulation experiments show that
the average area overhead is less than 4% for 100% SSF as
well as transition fault coverage.

We also presented a reseeding algorithm that minimizes
the area overhead. The algorithm takes care of seed selection
and reseeding cycle selection. The simulation results show

that, for most of the cases, the test length doesn’t have to be
maximized when the area overhead is minimized, which is a
double win for our technique.

Acknowledgement
This work was supported by King Fahd University of
Petroleum and Minerals and by LSI Logic under contract No.
16517.

References
[Alyamani 03] Alyamani, A., S. Mitra and E. J. McCluskey,
“BIST Reseeding with Very Few Seeds” VLSI Test
Symposium, Apr. 2003.
[Bardell 87] Bardell, P.H., W. McAnney, and J. Savir, “Built-
In Test for VLSI”, John Wiley, New York, 1987.
[Crouch 95] Crouch, Alfred, and M. D. Pressly, “Self Re-
seeding Linear Feedback Shift Register Data Processing
System for Generating a Pseudo-random Test Bit Stream and
Method of Operation,” US Patent 5,383,143, Jan. 1995.
[Eichelberger 83] Eichelberger, E. B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and Diagnosis for
LSSD Logic Self-Test”, IBM Journal of Research and
Development, Vol. 27, No. 3, pp. 265-272, May 1983.
[Eichelberger 89] Eichelberger, E. B., E. Lindbloom, F.
Motica, and J. Waicukauski, “Weigted Random Pattern
Testing Apparatus and Method,” US Patent 4,801,870, Jan. 89.
[Hellebrand 95] Hellebrand, S., J. Rajski, S. Tarnick, S.
Venkataraman and B. Courtois, “Built-in Test for Circuits with
Scan Based on Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers,” IEEE Transactions on Computers,
Vol. 44, No. 2, pp. 223-233, Feb. 1995.
[Kim 96] Kim, Kee, “Scan-Based Built-In Self Test (BIST)
with Automatic Reseeding of Pattern Generator,” US Patent
5,574,733, Nov. 1996.
[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns
for Scan Designs,” Proc. of ETC, pp. 237-242, 1991.
[Krishna 01] Krishna, C. V., A. Jas, and N. Touba, “Test
Vector Encoding Using Partial LFSR Reseeding” Proc. of
International Test Conference, pp. 885-893, 2001.
[McCluskey 85] McCluskey, E.J., “Built-In Self-Test
Techniques,” IEEE Des. & Test of Comp., pp. 21-28, Apr. 85.
[Rajski 98] Rajski, J., J. Tyszer and N. Zacharia , “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan,” IEEE Transactions on Computers, Vol. 47, No. 11, pp.
1188-1200, Nov. 1998.
[Savir 90] Savir, J., and W. McAnney, “A Multiple Seed
Linear Feedback Shift Register,” Proc. of International Test
Conference, pp. 657-659, 1990.
[Touba 95] Touba, N.A., and E.J. McCluskey, “Synthesis of
Mapping Logic for Generating Transformed Pseudo-Random
Patterns for BIST,” Proc. of International Test Conference, pp.
674-682, 1995.
[Touba 96] Touba, N.A., and E.J. McCluskey, “Test Point
Insertion Based on Path Tracing,” Proc. of VLSI Test
Symposium, pp. 2-8, 1996.
[Touba 00] Touba, N. and E.J. McCluskey, “Altering Bit
Sequence to Contain Predetermined Patterns,” US Patent
6,061,818, May, 2000.
[Wunderlich 90] Wunderlich, H.-J., “Multiple Distributions
for Biased Random Test Patterns,” IEEE Transactions on
Computer-Aided Design, Vol. 9, No. 6, pp.584-593, Jun. 1990.

