
WHICH CONCURRENT ERROR DETECTION SCHEME TO CHOOSE ?

Subhasish Mitra and Edward J. McCluskey
Center for Reliable Computing

Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, California

http://crc.stanford.edu

Abstract
Concurrent error detection (CED) techniques (based on

hardware duplication, parity codes, etc.) are widely used to
enhance system dependability. All CED techniques
introduce some form of redundancy. Redundant systems are
subject to common-mode failures (CMFs). While most of
the studies of CED techniques focus on area overhead, few
analyze the CMF vulnerability of these techniques. In this
paper, for the first time, we present simulation results to
quantitatively compare various CED schemes based on
their area overhead and the protection (data integrity) they
provide against multiple failures and CMFs. Our results
indicate that, for the simulated combinational logic
circuits, although diverse duplex systems (with two
different implementations of the same logic function)
sometimes have marginally higher area overhead, they
provide significant protection against multiple failures and
CMFs compared to other CED techniques like parity
prediction.

1. Introduction
Concurrent Error Detection (CED) techniques are

widely used to enhance system dependability [Sellers 68,
Kraft 81, Hsiao 81, Rao 89, Chen 92, Pradhan 96, Webb
97, Spainhower 99]. Almost all CED techniques function
according to the following principle: Let us suppose that
the system under consideration realizes a function f and
produces output f(i) in response to an input sequence i. A
CED scheme generally contains another unit which
independently predicts some special characteristic of the
system-output f(i) for every input sequence i. Finally, a
checker unit checks whether the special characteristic of the
output actually produced by the system in response to
input sequence i is the same as the one predicted and
produces an error signal when a mismatch occurs. Some
examples of the characteristics of f(i) are: f(i) itself, its
parity, 1’s count, 0’s count, transition count, etc. The
architecture of a general CED scheme is shown in Fig. 1.1.
Any CED scheme is characterized by the class of failures in
the presence of which the system data integrity is
preserved. By data integrity, we mean that the system
either produces correct outputs or indicates erroneous
situations when incorrect outputs are produced. In the
literature on fault-tolerance, this property has been referred
to as the fault-secure property [Siewiorek 92].

It may be noted that the general architecture of a CED
scheme such as Fig.1.1 relies on the use of hardware
redundancy (predictor and checker circuits) [Pradhan 96] for

error-detection. Time redundancy techniques like alternate-
data-retry and recomputation with shifted operands
[Shedletsky 78, Patel 82] can also be used for concurrent
error detection. Time redundancy directly affects the system
performance although the hardware cost is generally less
than that of hardware redundancy. The focus of this paper
is on CED techniques using hardware redundancy.

Input

Function f
 Output
Characteristic
 Predictor

Output

Predicted Output
 Characteristic

Checker

Error

Figure 1.1. General architecture of a concurrent error
detection scheme

Several CED schemes have been proposed and used
commercially for designing reliable computing systems
[Hsiao81, Chen 92, Webb 97, Spainhower 99]. These
techniques mainly differ in their error-detection capabilities
and the constraints they impose on the system design.
There are many publications on system design with
concurrent error detection. These include designs of
datapath circuits (like adders, multipliers, etc.) [Sellers 68,
Nicolaidis 93, Nicolaidis 97], and general combinational
and sequential logic circuits [Aksenova 75, Jha 93, De 94,
Touba 97, Zeng 99] with concurrent error detection.
Checker circuit designs for concurrent error detection are
described in [Wakerly 78, McCluskey 90]. Almost all
publications on CED focus on their area/performance
overhead. Reliability analysis of systems with concurrent
error detection is presented in [Ramamoorthy 75].
However, the systems considered are restricted to those
with redundancy through replication.

All the above-mentioned CED techniques guarantee
system data integrity against single faults. However, these

CED schemes are vulnerable to multiple faults and
common-mode failures. Common-mode failures are a
special and very important cause of multiple faults.
Common-mode failures (CMFs) produce multiple faults,
occurring generally due to a single cause; the system data
integrity is not guaranteed in the presence of CMFs. These
include design mistakes and operational failures that may
be due to external (such as EMI, power-supply disturbances
and radiation) or internal causes [Avizienis 84, Lala 94].
CMFs in redundant VLSI systems are surveyed in [Mitra
00a]. Design diversity has been proposed in the past to
protect redundant systems against common-mode failures.
While most of the previous efforts towards definition of
design diversity were qualitative, in an earlier paper [Mitra
99a] we developed a metric to quantify diversity among
several designs and used this metric to analyze the
reliability of redundant systems in the presence of CMFs.

It may be argued that, unlike systems with
duplication, concurrent error detection techniques based on
error detecting codes (e.g. parity, etc.) introduce inherent
diversity in the system. Thus, qualitatively, these systems
must be well-protected against CMFs.

The problem studied in this paper is to compare five
CED techniques for general combinational logic circuits
based on their area overhead and their vulnerability to
multiple failures and CMFs. The CED techniques
considered are those based on identical and diverse
duplication, parity prediction and Berger and Bose-Lin
codes. These techniques are general and can be used for any
system, unlike some other application-specific error
detection techniques such as [Mahmood 84, Jou 88, Huang
00].

This paper is organized as follows. Section 2 presents
a brief overview of various CED techniques. In Sec. 3, we
present simulation results to compare these CED
techniques. Section 4 describes analysis techniques to
quantify the vulnerability of various CED schemes to
multiple failures and CMFs. Some attempts to explain the
simulation results of Sec. 3 and some open questions are
reported in Sec. 5. The use of transition counting and
residue codes for concurrent error detection is discussed in
Sec. 6. Section 7 presents a system-level view of the CED
techniques studied in this paper. Finally, we conclude in
Sec. 8.

2. An Overview of Various CED Techniques
2.1. Duplex System

A duplex system is an example of a classical
redundancy scheme that can be used for concurrent error
detection [Sellers 68, Kraft 81, Sedmak 78]. Figure 2.1
shows the basic structure of a duplex system. Duplication
has been used for concurrent error detection in numerous
systems including the Bell Switching System [Kraft 81],
systems from companies like Stratus and Sequoia [Pradhan
96] and also in the IBM G5 and G6 processors [Webb 97,
Spainhower 99].

In any duplex system there are two modules (shown in
Fig. 2.1 as Module 1 and Module 2) that implement the

same logic function. The two implementations are not
necessarily the same. A comparator is used to check
whether the outputs from the two modules agree. If the
outputs disagree, the system indicates an error. For a
duplex system, data integrity is preserved as long as both
modules do not produce identical errors (assuming that the
comparator is fault-free). Since the comparator is crucial to
the correct operation of the duplex system, special self-
checking comparator designs (e.g., two-rail checker
[McCluskey 90]) that guarantee data integrity against
single comparator faults must be used.

Module 1 Module 2

Comparator

Error

Figure 2.1. A Duplex System

2.2. Parity Prediction
Parity prediction is a widely used CED technique. The

even/odd parity function indicates whether the number of
1’s in a set of binary digits is even or odd. Techniques for
designing datapath logic circuits and general combinational
circuits with parity prediction have been described in
[Sellers 68, Kraft 81, Nicolaidis 93, Nicolaidis 97, De 94,
Touba 97]. CED techniques with parity prediction in
sequential circuits are described in [Zeng 99]. Figure 2.2
shows the basic architecture of a system with concurrent
error detection using a single parity bit. The circuit has m
outputs and is designed in such a way that there is no
sharing among the logic cones generating each of the
outputs. Thus, a single fault can affect at most one output
bit position. The parity of the outputs is predicted
independently. The parity checker checks whether the
actual parity of the outputs matches the predicted parity
[McCluskey 90].

Z1 Z2 Zm
Predicted
Parity P

Parity Checker

ErrorOutputs Z1 - Zm

Figure 2.2. Parity prediction using a single parity bit
The restriction of no logic sharing among different

logic cones can result in large area overhead for circuits
with a single parity bit. Hence, the idea of using a single

parity bit has been extended to multiple parity bits. This
technique partitions the primary outputs into different
parity groups. Sharing is allowed only among logic cones
of the outputs that belong to different parity groups. There
is a parity bit associated with the outputs in each parity
group. The outputs of each parity group are checked using
a parity checker. Figure 2.3 shows the general structure of
a combinational logic circuit with two parity groups.

Z1 Zm

Parity Checker

P1

Outputs Z1 - Zk

Zk Zk+1 P2

Parity Checker

Outputs Zk+1 - ZmError1 Error2

Figure 2.3. Multiple parity bits for concurrent error
detection

In the circuit of Fig. 2.3, there are two parity groups
G1 and G2. The parity group G1 contains the outputs Z1,
…, Zk. P1 is the predicted parity for this parity group. It
predicts the parity of the primary outputs in G1. The
parity group G2 contains the outputs Zk+1, …, Zm . P2
is the predicted parity bit associated with this parity group.
There is sharing between logic cones corresponding to the
outputs Zk and Zk+1. No logic sharing is allowed among
the cones corresponding to outputs Z1, …, Zk (Zk+1, …,
Zm). Sharing is allowed among logic cones corresponding
to other output groups such as Zh and Zj, 1 ≤ h ≤ k, k+1
≤ j ≤ m .

2.3. Unidirectional Error Detecting Codes
CED techniques based on unidirectional error detecting

codes have been proposed in the past. A unidirectional
error detecting code assumes that all errors are
unidirectional; i.e., they change 0s to 1s or 1s to 0s but
never both at the same time. Two unidirectional error
detecting codes used for concurrent error detection are Berger
codes [Berger 61], and Bose-Lin codes [Bose 85].

For the Berger code, a code-word is formed by
appending a binary string representing the number of 0s (or
the bit-wise complement of the number of 1s) in the given
information word. Thus, for an information word
consisting of n bits, the Berger code requires  log2n extra
bits to represent the number of 0s (or the bit-wise
complement of number of 1s) in the information word.
The Berger code has the capability of detecting all
unidirectional errors. Figure 2.4 shows a concurrent error
detection technique using Berger codes.

Since the Berger code is a unidirectional error detection
code, it is important to ensure that a single fault causes

unidirectional errors at the outputs. This imposes a
restriction that the logic circuits should be synthesized in
such a way that they are inverter-free [Jha 93]. Inverters
can only appear at the primary inputs. In general, for
Berger codes used to detect unidirectional errors on
communication channels, the check-bits represent the bit-
wise complement of the number of 1’s in the information
word. “However, since concurrent error detection
techniques are designed to guarantee data integrity in the
presence of single faults, a single fault can affect either the
actual logic function or the logic circuit that predicts the
number of 1’s at the output but never both at the same
time (since there is no logic sharing between the actual
circuit and the circuit that predicts the number of 1’s)”.
Thus, we need not obtain a bit-wise complementation of
the number of 1’s [Das 98]. The checker design for Berger
codes is described in [Marouf 78].

Output

Logic Function
(Inverter-free)

Predict 1s
 count
(Inverter-
 free)

Checker

Error

Figure 2.4. Concurrent Error Detection Using Berger Codes

Output

Logic Function
 (Inverter-free)

 Predict 1s
 count mod 4
 (Inverter-free)

Checker

Error

Max. Fanout:
 2 outputs

Max. Fanout
 2 outputs

Figure 2.5. Concurrent Error detection using Bose-Lin
codes

Bose-Lin codes are capable of detecting t-bit
unidirectional errors in the code-word. The constructions of
Bose-Lin codes for t = 2 and t = 3 are given in [Bose 85].
Design of logic circuits with concurrent error detection
based on Bose-Lin codes has been reported in [Das 98].
Figure 2.5 shows the architecture of a system with
concurrent error detection based on 2-bit unidirectional error

detecting Bose-Lin code. Just like Berger codes, we want
the circuit to be inverter-free (except at the primary inputs)
so that any single fault creates unidirectional errors at the
outputs. We also need a restriction on the amount of logic
sharing since the code is capable of detecting at most 2
unidirectional errors. The restriction is that, any logic gate
in the circuit can be shared by the logic cones of at most
two primary outputs. Checker circuits for Bose-Lin codes
can be obtained from [Jha 91].

3. Simulation Results
In this section, we provide simulation results to

compare the five CED schemes (identical and diverse
duplication, parity prediction, Berger codes and Bose-Lin
codes), described in Sec. 2, based on their area overhead and
their vulnerability of different CED schemes to multiple
failures and CMFs. The simulation results show the
superiority of diverse duplication over other conventional
CED schemes for the simulated designs.

We considered some combinational logic circuits from
the MCNC 91 benchmark suite for simulation purposes.
We used the Sis tool [Sentovich 92] for synthesizing
circuits. For designing a diverse duplex system (with
different implementations), we generated truth tables with
complemented outputs and synthesized them using Sis.
Finally, we added inverters at the outputs of the resulting
implementation. For duplex systems, all the synthesis
optimizations can be applied. We used espresso for two-
level minimization and script.rugged available with the Sis
tool for multi-level optimization and mapped the circuits to
the LSI Logic G10p technology library [LSI 96]. For the
CED scheme with parity prediction we used the technique
in [Touba 97]. For synthesizing circuits with Berger
codes, we must ensure that the individual circuits are
inverter-free. The synthesis technique has been described in
[Jha 93]. We used algebraic transformations (using
script.algebraic available with Sis) during multi-level logic
synthesis so that the circuits are inverter-free. For
synthesizing circuits with Bose-Lin codes, a similar
approach was used. However, we have to limit the fanout
structure such that a gate can be shared by a maximum of
two output functions. The technique in [Das 98] was used
for synthesizing logic circuits with Bose-Lin codes.

Table 3.1. Area overhead of various CED schemes

Circuit Identical
Duplex

Diverse
Duplex

Parity Berger
Code

Bose -
Lin

Z5xp1 8 2 2 836 840 1335 1068
inc 743 751 6 9 2 854 807

squar5 507 485 4 6 5 627 570
ex5.20 646 649 5 9 3 815 755
misex1 412 423 3 6 7 468 488
sao2 754 787 7 4 8 983 864
rd73 4 7 4 480 683 853 763
rd84 6 4 2 684 971 1135 1056

Table 3.1 shows a comparison of the area overhead (in
terms of the G10p cell areas reported by the Sis tool) of
various CED schemes for eight MCNC benchmark
circuits. It is clear from Table 3.1 that the area overhead of

CED techniques based on Berger codes and Bose-Lin codes
are much higher than those based on parity prediction or
duplication. For many circuits, the area overhead of parity
prediction is marginally less than that of duplication.
Similar observations have been made in [Zeng 99]. Hence,
for the rest of this paper we focus mainly on CED
techniques based on duplication and parity prediction.
Next, we present simulation results on the vulnerability of
CED techniques to multiple failures and CMFs (permanent
or temporary).

First, we consider the case of permanent faults. In
dependable systems, it is realistic to assume a corrective
action is initiated after the system generates an error signal.
Thus, for any system with concurrent error detection, data
integrity is guaranteed as long as the system does not
produce an undetected corrupt output before indicating the
presence of an error. In the following discussion, we focus
on systems consisting of combinational logic circuits.
However, the entire discussion can be extended for
sequential logic circuits.

Correct Outputs
yij

 Detected
 Errors

zij

Undetected
 Errors

1 - yij - zij

Figure 3.7. Various components of output events of a
system with CED along with their probabilities

The probability that the data integrity of a
combinational logic system is guaranteed up to time t in
the presence of a fault pair (fi, fj) is derived in the
following way. Given an input distribution, let us
suppose that the probability that the system produces
correct outputs in the presence of (fi, fj) is yi,j; the
probability that the system produces incorrect outputs that
can be detected is zi,j. Figure 3.7 shows a Venn diagram
to explain yi,j and zi,j.

Assuming that the fault pair is permanent, the
probability that the system data integrity is guaranteed up
to time t (after the occurrence of the fault pair) is:

y y z y
z

y
yi j

t
i j
k

i j
k

t

i j
t i j

i j
i j
t

, , , ,
,

,
,()+ = +

−
−−

=
∑ 1

1 1
1

The above expression can be derived from the fact that
the system must either produce correct outputs up to time t
or indicate an error signal for the first time without
producing any corrupt data before t.

From the above expression for data integrity, it is clear

that the term wi,j =
z

y
i j

i j

.

,1 −
 plays an important role in

determining the system data integrity up to time t. This
term wi,j, the detected fraction, is the fraction of output

error events detected in the presence of the fault pair (fi, fj).
If the value of this term is 1 the system either produces
correct outputs or indicates erroneous situations when
incorrect outputs are produced. If the value is 0 the system
never produces any error signal when incorrect outputs are
produced. Note that, if a CED-based system produces
correct outputs for all input combinations even in the
presence of a fault, then the fault is redundant.

We used the following procedure to estimate the
protection against multiple and common-mode failures
provided by CED techniques based on duplication and
parity prediction. For each single-stuck-at fault fi in each
of these circuits, we simulated exhaustively all fault pairs
and input combinations to identify another single-stuck-at
fault fj in the same circuit that had the minimum value of
wi,j. Hence, the fault pair (fi, fj) can be regarded as a
worst-case permanent fault pair. Finally, we averaged the
wi,j’s over all the worst-case permanent fault pairs to
obtain the average value of the worst-case detected fraction
of incorrect outputs. Such a metric is pessimistic because
we are considering the worst-case permanent fault pairs.
The results are shown in Table 3.2. The benchmark
circuits are small enough so that exhaustive simulation is
possible.

Table 3.2. Average value of the detected fraction of
incorrect outputs for the worst-case permanent faults

Circuit Identical
Duplex

Diverse Duplex Parity

Z5xp1 0 0 . 7 0 0.46
inc 0 0 . 6 8 0.45

squar5 0 0 . 5 5 0.53
ex5.20 0 0 . 3 0 0.20
misex1 0 0 . 5 4 0.40
sao2 0 0 . 6 0 0.06
rd73 0 0 . 6 0 0.40
rd84 0 0 . 6 6 0.51

Table 3.2 demonstrates the advantages of using diverse
duplex systems over other CED schemes. It may be noted
that for diverse duplex systems, we found several worst-
case permanent fault pairs with the value of wi,j equal to 1.
This means that, even in the worst-case, system data
integrity is guaranteed for these fault pairs in the diverse
duplex system. However, we did not find any such worst-
case permanent fault pairs for systems with parity
prediction.

In addition to the above worst-case analysis, we studied
the CED techniques in various other ways. These
simulations also indicate that diverse duplication provides
better data integrity compared to identical duplication or
parity prediction against multiple and common-mode
failures. In Tables 3.3a (3.3b), for the above benchmark
circuits, we report the percentage of all worst-case
permanent fault pairs in parity prediction (diverse
duplication) with greater or equal detectability of incorrect
outputs compared to the worst-case permanent fault pairs in
diverse duplication (parity prediction). For example, for

the Z5xp1 circuit, 80% of the worst-case permanent fault
pairs in diverse duplication have values of incorrect output
detectability greater than or equal to those in parity
prediction (Table 3.3b).

Table 3.3. (a) Percentage of worst-case permanent fault
pairs in parity prediction with greater (or equal) incorrect

output detectability compared to those in diverse
duplication. (b) Percentage of worst-case permanent fault
pairs in diverse duplication with greater (or equal) incorrect
output detectability compared to those in parity prediction

 (a) (b)
Circuit Percentage Circuit Percentage
Z5xp1 20 % Z5xp1 80 %

inc 22 % inc 81 %
squar5 49 % squar5 55 %
ex5.20 50 % ex5.20 60 %
misex1 35 % misex1 70 %
sao2 10 % sao2 90 %
rd73 25 % rd73 77 %
rd84 23 % rd77 77 %

It may be argued that CMFs and multiple failures may
have temporary effects and it may be inaccurate to model
them as permanent faults. Next, we present simulation
results to compare the vulnerability of various CED
schemes to temporary CMFs and multiple failures
(possibly due to transient failures like radiation upsets,
power-supply disturbances, etc. or intermittent failures)
that persist for a single clock cycle. The vulnerability of a
CED scheme to a fault pair (fi, fj) resulting from such a
failure is given by di,j which is the conditional probability
that the system either produces correct outputs or generates
an error signal if an incorrect output is produced in the
presence of (fi, fj) for a given input distribution. Note
that, for duplex systems, di,j is the same as the diversity
with respect to the fault pair (fi, fj) as described in [Mitra
99a].

Table 3.4. Average value di,j’s of the worst-case temporary
fault pairs

Circuit Diverse Duplex Parity Prediction
Z5xp1 0 . 9 0 0.70

inc 0 . 9 2 0.78
squar5 0 . 9 0 0.86
ex5.20 0 . 8 9 0.68
misex1 0 . 9 0 0.70
sao2 0 . 9 3 0.57
rd73 0 . 9 0 0.80
rd84 0 . 8 8 0.70

For simulation purposes, in each of these benchmark
circuits with CED, for each single-stuck-at fault fi, we
simulated exhaustively all fault pairs and input
combinations to identify another single-stuck-at fault fj in
the same circuit that had the minimum value of di,j.
Hence, the fault pair (fi, fj) can be regarded as a worst-case
temporary fault pair. Finally, we averaged the di,j’s over
all the worst-case temporary fault pairs. These numbers are

reported in Table 3.4 for CED schemes based on diverse
duplication and parity prediction. The benchmark circuits
are small enough so that exhaustive simulation is possible.

The simulation results in this section demonstrate the
advantages of diverse duplication in providing protection
against multiple failures and CMFs compared to other
CED schemes. However, the major problem with diverse
duplication is to develop techniques for synthesizing logic
functions with diversity. We have investigated some
techniques for designing two implementations of any given
combinational logic circuit in order to maximize diversity
[Mitra 00b].

4. Analysis of Vulnerability to Multiple
Failures and CMFs

The vulnerability of a duplex system to multiple
failures and CMFs can be quantified using the idea of the
design diversity metric presented in [Mitra 99a, Mitra 99b]
and not repeated here.

For systems with parity prediction, if a single fault or
multiple faults affect a single logic cone, the data integrity
of the system is preserved. However, if a failure causes
faults in two logic cones in the same parity group, the data
integrity is not guaranteed.

A CED technique with a single parity bit is one with a
single parity group. Referring to Fig. 2.3, let us suppose
that fault fi affects the parity prediction logic of P2 and the
fault fj affects the part of the logic that is shared by
primary outputs Zk and Zk+1. Let Vi be the set of input
combinations in response to which the parity prediction
logic produces an incorrect output in the presence of fi.
Similarly, let Vj be the set of input combinations in
response to which the cone of logic affected by fj produces
an incorrect output for Zk+1 but not for Zk. If the fault fj
produces errors on output Zk, the error will be detected by
the parity bit P1 and data integrity will be preserved. The

value of di,j is 1
2

−
∩V Vi j

n , where n is the number of

inputs of the logic circuit in Fig. 2.3.
The system considered in Table 4.1 has four outputs

and two parity groups. The first parity bit is the parity of
the first two outputs and the second parity bit is the parity
of the remaining two outputs. Also assume that there is
sharing between the logic cones of the first and the third
output function. The fault-free outputs and the
corresponding parity bits are shown in Table 4.1. Let us
suppose that a CMF manifests itself as a single-stuck-at
fault pair (fi, fj), where fi affects the logic shared by the
first and third primary outputs and fj affects the logic cone
that predicts the first parity bit. The faulty outputs are
shown in the last two columns of Table 4.1. For the first
and the fourth input combinations, an error will be reported
by the parity checker corresponding to the second parity
bit. For the second input combination, an error will be

reported by the checker corresponding to the first parity bit.
For the third input combination, the system produces
erroneous outputs and none of the checkers can detect this
erroneous situation. Thus, the data integrity is
compromised for the third input combination only.
Table 4.1. Diversity calculation for the fault pair (fi, fj) in a

CED scheme with two parity bits
Inputs Fault-free

outputs
Fault-free

parity
Faulty

outputs
Faulty
parity

00 0 1 0 0 0 1 1 1 1 0 1 1
01 1 0 0 1 0 0 1 0 0 1 1 0
10 0 0 1 1 1 1 1 0 1 1 0 1
11 1 1 1 1 1 1 1 1 0 1 0 1

Note that, for any fault pair (fi, fj), di,j = yi,j + zi,j.
Hence, yi,j and zi,j can also be calculated for the fault pair
(fi, fj) using techniques similar to those used for
calculating di,j.

5. Theoretical Analysis and Open Questions
In this section, we present some attempts to provide a

theoretical explanation of the simulation results reported in
Sec. 3. It is clear from our discussions in Sec. 4 that the
analysis of vulnerability of various CED schemes to
multiple failures and CMFs is dependent on the di,j and zi,j
values of different faults. Given these values, the analysis
is simple. However, it may be very difficult to deduce
relationships among the sets of di,j and zi,j values of faults
in a system with hardware duplication and a system with
parity checking. This is because the constraints used to
synthesize the systems with different CED techniques are
different. For example, CED techniques based on a single
parity bit do not allow any logic sharing among the logic
cones corresponding to different outputs. On the other
hand, CED techniques using hardware duplication do not
impose any fanout or logic sharing restrictions within a
module. It has been demonstrated in [Mitra 99b, Mitra
00b] that fanout restrictions and logic sharing affect the
detectability and the di,j values of fault pairs in redundant
systems. In this section, we analyze these systems based
on simplistic error models (e.g., the Bernoulli or the q-ary
error model used for signature analysis [Saxena 97]) to
provide an insight into the simulation results. Note that,
these error models have many drawbacks and hence, the
simplistic assumptions associated with these models are
questionable [Saxena 97].

For the Bernoulli error model with parameter p, it is
assumed that the probability that a fault produces an error
on any output bit is p and is independent of errors on other
outputs. Thus, the probability that a particular error vector
(obtained by XOR-ing the fault-free and the faulty output)
with i errors appears (for an n-output circuit) is

ini pp −−)1(. The probability that any arbitrary circuit

produces erroneous outputs in the presence of a fault fi is

n

i
p p

i

n
i n i





−
=

−∑
1

1() . Hence, for a system with diverse

duplication, the expected value of (1 – di,j) for (fi, fj) is

n

i
p p

i

n
i n i





−
=

−∑
1

2 2 21() = [()] ()p p pn n2 2 21 1+ − − − .

This is because the system data integrity is not preserved
only when both modules produce identical errors.

For a system with parity prediction using a single
parity bit, consider a fault pair (fi, fj) where fi and fj affect
logic cones corresponding to outputs g and h, respectively.
If the probability that fi (fj) produces an error in any output
bit for a general logic circuit with no restrictions on logic
sharing is p, then the probability that both fi and fj produce
errors at outputs g and h, respectively, at the same time is

p2 . Since there is no sharing among logic cones in a
circuit with parity prediction, the probability that fi (fj)
produces an error on output g (h) is p; however, the
probability that fi (fj) produces an error on any other output
is 0. Thus, the expected value of (1 – di,j) for a fault pair

(fi, fj) is p2 . Note that, the detectability values of faults
fi and fj have reduced drastically for the system with parity
prediction; this will produce lower values of (1 – di,j)
compared to diverse duplication for practical values of p (<
1). This is not true as shown by the simulation results.
This is because the assumption of independence of errors
on different output bits is not true for general logic
circuits.

However, suppose that, for a diverse duplex system,
we have one implementation which has no logic sharing
among the different output cones and the other
implementation does not have any constraint on the
amount of logic sharing. Let us suppose that fault fi
affects the logic cone of output g in the first
implementation and fault fj affects the second
implementation. The probability that fi produces an error
on output bit g is p. However, since there is no logic
sharing among the different output cones, fi does not affect
the other output bits. Hence, the data integrity of the
diverse duplex system is not preserved in the presence of
(fi, fj) only when fj produces an error on output g and no
error on other output bits in the second implementation.

The probability of this event is p p n()1 1− − . Hence, the
expected value of (1 – di,j) for a fault pair (fi, fj) is

p p n2 11()− − which is less than p2 . Thus, in this
scenario, even with the Bernoulli model we find that the
data integrity of a diverse duplex system is better than that
of parity prediction. For convenience of the above
analysis, it is assumed that both faults fi and fj produce
error at any output bit with probability p. However,
similar analysis can be performed and similar conclusions
can be reached when the value of parameter p is different for
fi and fj.

On the other extreme, we can consider the q-ary model
[Pradhan 91]. For the q-ary error model, it is assumed that,

in an n-output circuit and for a fault f with detectability q
(probability that the fault produces incorrect outputs), the
probability of any non-zero error vector (obtained by xor-

ing the fault-free and faulty responses) is
q

n2 1−
. Note

that, there are 2 1n − non-zero error vectors. Hence, for a
system with diverse duplication, the value of (1 – di,j) for a

fault pair (fi, fj) is
q
n

2

2 1−
. Note that, for a system with

identical duplication, the expected value of (1 – di,j) for a
worst-case fault pair (fi, fj) is q (since, the worst-case fault
pairs affect identical leads in both modules).

For a system with parity prediction using a single
parity bit, consider a fault pair (fi, fj) where fi and fj affect
logic cones corresponding to outputs g and h, respectively.
If the detectability of fi in a general logic circuit (with no
restrictions on logic sharing) is q, then the detectability of

fi in the circuit with parity prediction is approximately
q

2
.

This is because, out of 2 1n − error vectors, 2 1n− produce
an error on output bit g; hence, the probability that the
fault fi produces an error on output g in a general logic

circuit is
q n

n
2

2 1

1−

−
 which is approximately

q

2
. Hence, the

expected value of (1 – di,j) for a worst-case fault pair (fi, fj)
in a circuit with parity prediction using a single parity bit

is
q2

4
 (when both the faults produce errors) which is more

than
q
n

2

2 1−
. Similar analysis can be performed for

circuits with multiple parity bits. Hence, diverse
duplication provides better data integrity against multiple
failures and CMFs compared to identical duplication and
parity prediction. For convenience of the above analysis, it
is assumed that both faults fi and fj have the same
detectability q. However, similar analysis can be performed
and similar conclusions can be reached when fi and fj have
different detectability values.

Table 5.1. (1 – di,j) value for fault pair (fi, fj)
Diverse Duplex Parity

Bernoulli
model

[(1-p)2+p2]n – (1-p)2n *

p2(1-p)n-1 **

p2

q-ary model q2(2n-1)-1 0.25q2

* - Both implementations have no fanout restrictions
** - One implementation has no output cone sharing

The results presented in this section are summarized in
Table 5.1. Note that, the Bernoulli and the q-ary models
may not be realistic for many logic circuits as pointed out
in [Saxena 97]. Hence, we reiterate that the problem of
developing more sophisticated and elegant models for
theoretically analyzing the vulnerability of various CED
techniques to multiple failures and CMFs is open.

6. Transition Count and Residue for CED
As mentioned in Sec. 1, any CED technique predicts a

particular characteristic of the system output. The output
characteristics considered in the previous sections are the
output itself, parity functions and 1’s (or 0’s count). Some
other possible output characteristics are transition count
and residue modulo some number.

Transition counting has been used in the past as a
compaction technique for circuit responses during off-line
test [Hayes 76]. For a CED scheme based on transition
count, the special output characteristic is the number of up
(0 → 1) and down (1 → 0) transitions in a given output
vector. Transition counting is not a favorable method for
concurrent error detection. First, the maximum value of
the total number of transitions (up and down) in an n-bit
binary word is n-1. Thus, the number of bits needed to
represent the number of transitions is equal to the number
of bits required to represent the number of 1’s (or 0’s) in
the same word. Transition counting has another serious
problem. Suppose that the correct output word from a
system is 100100. The number of up-transitions (0 → 1)
in the output word is 1 and the number of down-transitions
(1 → 0) is 2. Suppose that in the presence of a fault that
causes a single error, the output word is changed to
100110. The number of up and down transitions in the
erroneous output word is the same as that of the correct
output word; hence, this error is not detected.

Residue codes are used for concurrent error detection in
mainly datapath elements like adders, multipliers, etc.
[Langdon 70, Avizienis 71]. Given an n-bit output vector,
the output characteristic captured by a residue code modulo
b is the binary representation of the number x = y mod b,
where y is the n-bit number represented by the given
output word. The recommended value of b is of the form
2m – 1. When b = 3, we need two bits to represent the
residue of any number. For a CED scheme using residue
checking modulo 3, there cannot be any logic sharing
between any cones corresponding to any two primary
outputs. If there is logic sharing between two cones
corresponding to bit positions i and j (i > j), a single fault
can cause errors in these two positions. Suppose that (i –
j) is even and the correct output word has 0’s in bit
positions i and j. If a single fault causes the bit positions i
and j to be flipped to 1, the resulting error will be divisible
by 3 and will not be detected. Similar arguments can be
made for the case with (i – j) is odd. Thus, we need two
extra bits even though there cannot be any logic sharing
unlike parity checking where we need only a single bit.
Our synthesis results for b = 3 and 7 also show that the
area required for a CED technique based on residue checking
is very high for general logic circuits. Note that, this
result is not true for datapath logic circuits like adders and
multipliers because, simple general schemes can be devised
to predict the residue of sum or product of two numbers
(arithmetic coding). This result is also supported by the
following observation in [Langdon 70]: “the residue mod 3
check adder is not economical unless the addition operands
are already provided with the mod 3 check bits”.

7. System-Level Issues
In the previous sections, we mainly focused on CED

techniques for combinational logic blocks. In Fig. 7.1 we
present a system-level view of concurrent error detection.
The system in Fig. 7.1a contains a combinational logic
block implementing a logic function f; the logic block
obtains its inputs from register X and the outputs are stored
in register Z.

In Fig. 7.1b, we present a duplication-based CED
technique (identical or diverse) for the system in Fig. 7.1a.
The combinational logic blocks N1(f) and N2(f) implement
function f. Registers X and Z and the system bus are
duplicated; this can possibly cause high area overhead. In
order to create diversity in the register contents, register X2
(Z2) can store the complemented forms of the contents of
register X1 (Z1). Figure 7.1c presents a CED scheme
based on parity prediction for the system in Fig. 7.1a.
Each register has a single parity bit (Px for X and Pz for
Z). It has been demonstrated in Sec. 3, through
simulation, that the area overhead of combinational logic
blocks with parity prediction is marginally less than that of
duplication; however, if the number of register flip-flops
and bus lines are counted, the scheme in Fig. 7.1c has
significantly less logic area overhead than Fig. 7.1b.

Figure 7.1d presents a CED scheme that uses diverse
duplication for combinational logic blocks and parity
prediction for registers and bus lines. Thus, we can achieve
significant improvement in protection against multiple and
common-mode failures (through diverse duplication) while
the total area overhead is comparable to that of parity
prediction (Fig. 7.1c). For this purpose, we need a tree of
XOR gates, as shown in Fig. 7.1d. The CED scheme in
Fig. 7.1d needs two extra 2-input XOR gates and one 2-
input OR gate (XOR-tree and the equality checker) for each
output of the combinational logic block compared to the
CED scheme in Fig. 7.1c. Note that, the XOR tree may
have significant delay overhead. This delay overhead can be
reduced by increasing the number of parity bits (i.e., the
number of extra flip-flops in the registers). Interesting
problems analyzing this area-delay trade-off can be studied
in this context. The XOR tree in Fig. 7.1d can be
eliminated if the parity bit of the register is generated from
a dual-rail checker used to check the outputs of the
combinational logic [Nicolaidis 93]. Routing overhead of
the designs in Fig. 7.1b, 7.1c and 7.1d has not been
considered in the above discussion.

8. Conclusions
The theory and instrumentation of various concurrent

error detection techniques have been subjects of active
research interest since the late 1950s till today. However,
no systematic study on the vulnerability of these CED
schemes to multiple failures and CMFs has been reported
in the past. In this paper, for the first time, we provided
analytical formulas and simulation results to quantify the
possible effects of multiple failures and CMFs on systems
employing well-known CED schemes. The main
conclusions of this paper are: (1) Our simulation results on

benchmark circuits reveal that we obtain marginal reduction
in logic area by using CED schemes based on parity
prediction instead of duplication; (2) CED schemes based
on Berger codes and Bose-Lin codes incur very high logic
area overhead; (3) For the simulated designs, diverse duplex
systems with different implementations of the same logic
function have a significant advantage over other CED
schemes in providing protection against multiple failures
and CMFs. This advantage makes diverse duplex systems
a prominent candidate for implementing concurrent error
detection in dependable systems. This result supports
many of the observations in [Sedmak 78]. Looking at the
future, research efforts must focus on cost-effective ways of
designing CED techniques based on diverse duplication to
reduce their area overhead while obtaining significant
protection against multiple failures and CMFs.

9. Acknowledgments
This work was supported by Defense Advanced

Research Projects Agency (DARPA) under Contract No.
DABT63-97-C-0024. The authors wish to thank Prof. Nur
Touba of Univ. of Texas at Austin and Nirmal Saxena,
Philip Shirvani and Robert Huang of Stanford CRC.

10. References
[Aksenova 75] Aksenova, G. P. and E. S. Sogomonyan,

“Design of Self-Checking Built-In Check Circuits for
Automata with Memory,” Automation and Remote

Control, Vol. 36, pp. 1169-1177, July 1975.
[Avizienis 71] Avizienis, A., “Arithmetic Error Codes:

Cost and Effectiveness Studies for Application in Digital
System Design,” IEEE Trans. Computers, Vol. C-20,
No. 11, pp. 1322-1331, Nov. 1971.

[Avizienis 84] Avizienis, A. and J. P. J. Kelly, “Fault
Tolerance by Design Diversity: Concepts and
Experiments,” IEEE Computer, pp. 67-80, Aug. 1984.

[Berger 61] Berger, J. M., “A Note on Error Detection
Codes for Asymmetric Channels,” Information and
Control, Vol. 4, pp. 68-73, 1961.

[Bose 85] Bose, B. and D. J. Lin, “Systematic
Unidirectional Error-Detecting Codes,” IEEE Trans.
Comp., pp. 1026-1032, Nov. 1985.

[Chen 92] Chen, C. L., et al., “Fault-tolerance Design of
the IBM Enterprise System/9000 Type 9021
Processors,” IBM Journal Res. and Dev., Vol. 36, No.
4, pp. 765-779, July 1992.

[Das 98] Das, D. and N. A. Touba, “Synthesis of Circuits
with Low-Cost Concurrent Error Detection based on
Bose-Lin codes,” VLSI Test Symp., pp. 309-315, 1998.

[De 94] De, K., C. Natarajan, D. Nair and P. Banerjee,
“RSYN: A System for Automated Synthesis of Reliable
Multilevel Circuits,” IEEE Trans. VLSI, Vol. 2, pp.
186-195, June 1994.

X

Z

f

X1

Z1

N1(f)

X2

Z2

N2(f)

Check
Equal

Check
Equal

Error

Error

(a) (b)

X

Z

f

Parity
Check

Parity
Check

Error

Error

Px

Pz

Parity
Predict

X

Z

N1(f) N2(f)

Parity
Check

Parity
Check

Error

Error

(d)

Px

Check
Equal

Error

XOR
Tree

Pz

(c)
Figure 7.1. Systems with CED: (a) Example (b) Identical or Diverse Duplication (c) Parity prediction (d) Diverse duplication

for combinational logic; parity prediction for registers and bus

[Hayes 76] Hayes, J. P., “Transition Count Testing of
Combinational Logic Circuits,” IEEE Trans Computers,
Vol. C-25, No. 6, pp. 613-620, June 1976.

[Huang 00] Huang, W., N. R. Saxena and E. J.
McCluskey, “A Reliable LZ Data Compressor on
Reconfigurable Coprocessors,” Proc. IEEE Symp. Field
Programmable Custom Computing Machines, 2000.

[Hsiao 81] Hsiao, M-Y, W. C. Carter, J. W. Thomas and
W. R. Stringfellow, “Reliability, Availability and
Serviceability of IBM Computer Systems: A Quarter
Century of Progress,” IBM Journal of Research and
Development, Vol. 25, No. 5, pp. 453-469, Sept. 1981.

[Jha 91] Jha, N. K., “Totally Self-Checking Checker
Designs for Bose-Lin, Bose, and Blaum Codes,” IEEE
Trans. CAD, Vol. 10, No. 1, pp. 136-143, Jan. 1991.

[Jha 93] Jha, N. K. and S. J. Wang, “Design and Synthesis
of Self-Checking VLSI Circuits,” IEEE Trans. CAD,
Vol. 12, pp. 878-887, June 1993.

[Jou 88] Jou, J-Y, and J. A. Abraham, “Fault-Tolerant
FFT Networks,” IEEE Trans. Computers, Vol. 37, No.
5, pp. 548-561, May 1988.

[Kraft 81] Kraft, G. D. and W. N. Toy, Microprogrammed
Control and Reliable Design of Small Computers, 1981.

[LSI 96] G10-p Cell-Based ASIC Products Databook, LSI
Logic, May 1996.

[Lala 94] Lala, J. H. and R. E. Harper, “Architectural
principles for safety-critical real-time applications,” Proc.
of the IEEE, vol. 82, no. 1, pp. 25-40, Jan. 1994.

[Langdon 70] Langdon, G. G. and C. K. Tang, “Concurrent
Error Detection for Group Look-ahead Binary Adders,”
IBM Journal Res. and Dev., pp. 563-573, Sept. 1970.

[Mahmood 84] Mahmood, A., D. M. Andrews and E. J.
McCluskey, “Executable Assertions and Flight
Software,” Proc. AIAA/IEEE Digital Avionics Systems,
Conf., pp. 346-351, 1984.

[Marouf 78] Marouf, M. A. and A. D. Friedman, “Design
of Self-checking Checkers for Berger Codes,” Proc.
FTCS, pp. 179-184, 1978.

[McCluskey 90] McCluskey, E. J., “Design techniques for
Testable Embedded Error Checkers,” IEEE Computer,
Vol. 23, No. 7, pp. 84-88, July 1990.

[Mitra 99a] Mitra, S., N. R. Saxena and E. J. McCluskey,
“A Design Diversity Metric and Reliability Analysis for
Redundant Systems,” Intl. Test Conf., pp. 662-671,
1999.

[Mitra 99b] Mitra, S., N. R. Saxena and E. J. McCluskey,
“A Design Diversity Metric and Analysis of Redundant
Systems,” Technical Report, Center for Reliable
Computing, CRC-TR 99-4, Stanford University, 1999.

[Mitra 00a] Mitra, S., N. R. Saxena and E. J. McCluskey,
“Common-Mode Failures in Redundant VLSI Systems:
A Survey,” IEEE Trans. Reliability, 2000, To appear.

[Mitra 00b] Mitra, S. and E. J. McCluskey,
“Combinational Logic Synthesis for Diversity in Duplex
Systems,” Proc. Intl. Test Conf., 2000.

[Nicolaidis 93] Nicolaidis, M., “Efficient Implementations
of Self-Checking Adders and ALUs,” Proc. Intl. Symp.

Fault-Tolerant Computing, pp. 586-595, 1993.
[Nicolaidis 97] Nicolaidis, M., R. O. Duarte, S. Manich

and J. Figueras, “Fault-secure Parity Prediction
Arithmetic Operators,” IEEE Design and Test of
Computers, Vol. 14, No. 2, pp. 60-71, 1997.

[Patel 82] Patel, J. H. and L. Y. Fung, “Concurrent Error
Detection in ALUs by Recomputing with Shifted
Operands,” IEEE Trans. Computers, Vol. C-31, No. 7,
pp. 589-595, July 1982.

[Pradhan 91] Pradhan, D. K., and S. K. Gupta, “A New
Framework for Designing and Analyzing BIST
Techniques and Zero Aliasing Compression,” IEEE
Trans. Computers, Vol. 40, No. 6, pp. 743-763, 1991.

[Pradhan 96] Pradhan, D. K., Fault-Tolerant Computer
System Design, Prentice Hall, 1996.

[Ramamoorthy 75] Ramamoorthy, C. V. and Y-W Han,
“Reliability Analysis of Systems with Concurrent Error
Detection,” IEEE Trans. Computers, Vol. C-24, No. 9,
pp. 868-878, Sept. 1975.

[Rao 89] Rao, T. R. N. and E. Fujiwara, Error-Control
Coding for Computer Systems, Prentice-Hall, 1989.

[Saxena 97] Saxena, N. R., and E. J. McCluskey, “Parallel
Signature Analysis Design with Bounds on Aliasing,”
IEEE Trans. Computers, Vol. 46, No. 4, pp. 425-438,
April 1997.

[Sedmak 78] Sedmak, R. M. and H. L. Liebergot, “Fault-
Tolerance of a General-Purpose Computer Implemented
by Very Large Scale Integration,” Proc. FTCS, pp. 137-
143, 1978.

[Sellers 68] Sellers, F., M-Y Hsiao and L. W. Bearnson,
Error Detection Logic for Digital Computers, McGraw-
Hill Book Company, 1968.

[Sentovich 92] Sentovich, E. M., et al., “SIS: A System
for Sequential Circuit Synthesis,” ERL Memo. No.
UCB/ERL M92/41, EECS, UC Berkeley, CA 94720.

[Shedletsky 78] Shedletsky, J.J., “Error Correction by
Alternate-Data Retry,” IEEE Trans. Computers, pp. 106-
112, Feb. 1978.

[Siewiorek 92] Siewiorek, D. P. and R. S. Swarz, Reliable
Computer Systems: Design and Evaluation, Digital
Press, 1992.

[Spainhower 99] Spainhower, L. and T. A. Gregg, “S/390
Parallel Enterprise Server G5 fault tolerance,” IBM
Journal of Research Development, Vol. 43, pp. 863-873,
Sept./Nov. 1999.

[Touba 97] Touba, N. A. and E. J. McCluskey, “Logic
Synthesis of Multilevel Circuits with Concurrent Error
Detection,” IEEE Trans. CAD, Vol. 16, pp. 783-789,
July 1997.

[Wakerly 78] Wakerly, J., Error Detecting Codes, Self-
checking Circuits and Applications, 1978.

[Webb 97] Webb, C. F., and J. S. Liptay, “A High
Frequency Custom S/390 Microprocessor,” IBM Journal
Res. and Dev., Vol. 41, No. 4/5, pp. 463-474, 1997.

[Zeng 99] Zeng, C., N. R. Saxena and E. J. McCluskey,
“Finite State Machine Synthesis with Concurrent Error
Detection,” Proc. Intl. Test Conf., pp. 672-680, 1999.

