
1

OUTPUT ENCODING FOR HAZARD-FREE ROBUST PATH DELAY FAULT TESTABILITY

Subhasish Mitra* and Edward J. McCluskey

Center for Reliable Computing, Stanford University

Gates 236, MC 9020

Gates Building 2A

Stanford, CA 94305

Voice: (650)-723-1258

FAX: (650)-725-7398

Email : smitra@crc.Stanford.EDU

* - designated presenter

ABSTRACT
In this extended abstract, we present a technique for encoding the symbolic outputs of a given specification

such that the resulting two-level logic is hazard-free robust path delay fault testable. By applying delay fault
testability preserving transformations, we can obtain a multi-level implementation from the two-level logic circuit.
As a secondary goal, our technique attempts to minimize the area of the synthesized design.

2
1. INTRODUCTION

 Due to the presence of defects, the propagation delay of circuit paths in a synchronous digital circuit may exceed
the clock interval — these are called delay faults. A delay test that is robust should be valid in the presence of
arbitrary delays and not invalidated by hazards. If a delay test for a fault on a path p single-event sensitizesp, then
it is a hazard-free robust test — this means, that there is a single event propagating through the path p to the output
and no other event propagates through any other path to the output. Hazard-free robust delay test has an added
advantage because we can isolate the path having the delay fault. When the outputs of a logic function are
specified symbolically, output encoding algorithms are used to encode the symbolic outputs as binary values.
Depending on how the outputs are encoded, the resulting logic function may or may not be delay fault testable. In
this paper, we present an output encoding technique such that the resulting two-level logic function (obtained after
encoding) is robust path delay fault testable — in fact, our aim is to obtain a hazard-free robust delay testable logic
in order to exploit the advantage of hazard-free robust delay test over general robust delay test. As a secondary
goal, our encoding technique attempts to minimize the area of the synthesized design.

2. MOTIVATION
 The output encoding problem involves choosing binary codes for the symbolic outputs of a given specification.
Since the encoding affects the area of the final logic implementation, a good output encoding is very important.
An exact technique for output encoding for generating a minimum area two-level logic has been described in
[Devadas 91].
 A particular output encoding can also affect the delay fault testability of the final logic implementation. In this
paper, we consider delay fault testability of the two-level logic that is generated from a particular encoding. The
reason for this is that the existing logic synthesis techniques for robust path delay fault testability [Devadas
92a][Devadas 92b][Maleh 94] first generate robust path delay fault testable two-level logic and then apply
testability preserving transformations to obtain multi-level logic implementations. The technique of designing
robustly delay fault testable combinational circuit, reported in [Kundu 91], also starts with the two-level logic
implementation and applies Shannon’s expansion iteratively to obtain the final testable logic. Thus, if we can
ensure that a two level implementation is robust path delay fault testable, then testability preserving
transformations can be applied to obtain a multi-level logic implementation.
 Let us consider the specification in Table 1. Since, there are six symbolic outputs, we use 3 bits to encode them.
Consider the encoding of the symbolic outputs as shown in Table 2(a). The truth table for the logic to be
implemented with this encoding is shown in Table 2(b).

Table 1: Example truth table Table 2(a): An Encoding Table 2(b): Truth Table of the logic
Minterms

abcd
Symbolic
Outputs

Symbolic
Outputs

Encoding

xyz

Minterms

abcd

Encoded
Outputs

xyz

0000 out3 out0 111 0000 010
0010 out1 out1 110 0010 110
0011 out4 out2 100 0011 101
0110 out4 out3 010 0110 101
0111 out1 out4 101 0111 110
1000 out4 out5 000 1000 101
1001 out4 1001 101
1010 out2 1010 100
1100 out0 1100 111
1101 out0 1101 111
rest out5 rest 000

11

1 1

1 1

1 1
1

00 01 11 10

00

01

10

11

ab

cd

Minterms Symbolic
Outputs

1101 out1
1100 out2
1111 out3
0000 out4
0001 out4

Fig.1 Karnaugh Map for the first output column of Table 2(b) Table 3: Example of output encoding process [Devadas 91]
 Figure 1 shows the Karnaugh map for the first output column (output x) of the truth table specified in Table
2(b). The minimal two-level implementation of the first output column of table 2(b) is either ac´ + a´c + ab´d´ or
ac´ + a´c + b´cd´. It can be easily verified that the two-level implementations of neither of these boolean
expressions are hazard-free robust path delay fault testable. For the first expression, let us consider any path from
input a through the AND gate realizing ab´d ́through the OR gate to the output. In order to sensitize the path,

3
bothb and d must be 0. If c equals 0 (1), there is another event that propagates from input a through the AND gate
ac ́ (a´c) to the output. Thus, hazard free robust delay testing of the above mentioned path is not possible. A
similar situation happens when we try to test the path starting from c through the AND gate b´cd ́to the output for
the other expression.
 However, for the example of Table 1, if we encoded out2 as 011, then the two-level logic corresponding to the
first output column will be hazard-free robust testable for path delay faults — then the expression for the output
column x becomes ac´ + a´c. It can be shown that the minimal two-level implementations of the second and third
(outputs y and z) output columns of Table 2(b) are robust delay fault testable. It may be noted that we minimized
the three output functions of Table 2(b) separately because it has been proved in [Devadas 92a] that individual
minimization of each output function is a necessary condition for hazard-free robust path delay fault testability of
the synthesized two-level logic.

3. Basic Methodology followed
 The basic methodology followed is an extension of the Quine-McCluskey method of two-level logic
minimization [McCluskey 56][McCluskey 86] for encoding symbolic outputs as described in [Devadas 91]. For
the sake of completeness, we describe the procedure reported in [Devadas 91] briefly in this section with the help
of the example in Table 3 (taken from [Devadas 91]).
 Each minterm has a tag associated with it — it is the set of symbolic outputs whose ON-set the minterm belongs
to. For the example in Table 3, tag of 1101, 1100, 1111, 0000 and 0001 are { out1} , { out2} , { out3} , { out4} and
{ out4} , respectively. While generating prime implicants (called generalized prime implicants (GPI), in this case),
two k-cubes are merged to form a k+1-cube (a full minterm is a 0-cube) and the tag of the resulting k-cube is the
union of the tags of the two original k-cubes that were merged to obtain the k+1-cube. Moreover, a k+1-cube can
cancel ak-cube only if their tags are equal. For this example, 0-cubes 1101 and 1100 are merged to obtain the 1-
cube 110- with the tag { out1, out2} , 0-cubes 1101 and 1111 are merged to obtain 11-1 with the tag { out1, out3}
and 0000 and 0001 are merged to obtain 000- with the tag { out4} . Since the tag of 000- is the same as that of 0000
and 0001, we cancel 0000 and 0001. However 1101, 1100 and 1111 cannot be canceled.
 After computing the generalized prime implicants, as described above, a procedure for obtaining a minimal
cover has been described in [Devadas 91]. Once the cover is obtained, encodeability constraints are applied on the
cover and a graph based algorithm or a boolean satisfiability algorithm is executed to check whether the cover is
encodeable [Devadas 91]. If the cover is encodeable, the codes for the symbolic outputs are directly obtained from
the algorithm — otherwise, some other minimal cover is selected and the encodeability checks are performed on
that cover until an encodeable cover is obtained. For a given encodeable set of GPI’s, the final cover is obtained in
the following way: for each GPI in the set, the bitwise intersection of the encoding of the symbols in the tag set of
the GPI tells us the output functions for which the GPI is 1 or 0. Exactness of the above procedure has been
proved in [Devadas 91].
 In this paper, we modify the basic scheme in order to incorporate hazard-free robust path delay fault testability
constraints on a minimal encodeable cover.

4. DELAY FAULT TESTABILITY CONSTRAINTS
 In this section, we describe our technique for generating delay fault testability constraints with the help of the
example in Table 4(a).

Table 4(a): An example to illustrate our technique Table 4(b): The generalized prime implicants for Table 4(a)
Minterms

xyz
Symbolic
Outputs

GPI Cube
xyz

Tag

101 out1 g1 101 out1
100 out2 g2 100 out2
111 out3 g3 111 out3

g4 10- out1, out2
g5 1-1 out1, out3

 As shown in Table 4(b), there are five GPI’s: g1: (xy´z ; <out1>), g2: (xy´z´ ; <out2>), g3: (xyz;<out3>), g4:
(xy´ ; <out1, out2>) and g5: (xz ; <out1, out3>). We compute the delay fault testability properties of a set of these
GPI’s as follows: let us compute the delay fault testability of the GPI g1 (xy´z; <out1>) in the presence of g2
(xy´z´; <out2>). For single event sensitization of the path p from input z through g1 to the output, we require that
there must exist an assignment of 1’s and 0’s to x and y such that the path p is sensitized through g1 and the output
of g2 is 0. For sensitizing path p through g1, we require (x = 1 and y = 0); to have 0 on the output of g2, we
require (x = 0 or y = 1); however, these two fomulae are not satisfiable at the same time. Hence, if g1 is used as an
AND gate in the implementation of an output function (after encoding), then the AND gate corresponding to g2
cannot be used in the implementation of the same function. This means, that for any encoding, if AND gates
corresponding to g1 and g2 are present in the final implementation, then for all bits in the encoding of out1 and
out2, if a particular biti is 1 in the encoding of out1 then biti must be 0 in the encoding of out2. A convenient way

4
of writing this constraint is: ∀ i, ei(out1) = 1 → ei(out2) = 0. Here, ei(out1) means the i th bit in the encoding of
out1. Note that, delay fault testability of g2 in the presence of g1 also provides the same constraint.
 Similarly, consider the delay fault testability of g1 in the presence of g4. Single event sensitization of the path
from input y through the AND gate corresponding to g1 to the output requires (x = 1 and z = 1) and (x = 0) which
is not satisfiable. As discussed in the previous section, the output of g1 will be 1 for each bit that is 1 in the
encoding of out1 while the output of g4 will be 1 for each output bit that is 1 in the encoding of both out1 and out2.
Hence, if AND gates corresponding to g1 and g4 are used in the final implementation, then the following

constraint is generated: ∀ i, [ei(out1)] = 1 → [ei(out1)∧ ei(out2)] = 0, because, the AND gates g1 and g4 cannot be
used together for the realization of any output function. If we calculate the delay testability properties of each GPI
in presence of the other GPI, we find that if AND gates { g2, g3} or { g4, g5} are chosen for any implementation
then there is no constraint — otherwise constraints are generated. Thus, we need not consider the testability of
{g2, g3} in presence of g1 because from the previous step we already know the constraints generated when AND
gates corresponding to g1 and g2 (g1 and g3) co-exist in the final implementation.
 Suppose we choose AND gates { g4, g5} for any implementation (cover). We know that AND gates g4 and g5
can coexist in any implementation without any delay testability constraints. However, there are some
encodeability constraints [Devadas 91] which are satisfied when we assign 11 to out1, 10 to out2 and 01 to out3.
The two encoding bits are c1 and c2. The encoding is shown in Table 5. The resulting two-level logic circuit is
shown in Fig. 2 and as per our analysis, it is guaranteed to be hazard-free robust path delay fault testable as every
path is single event sensitizable.

Symbolic
Outputs

Encoding
c1 c2

out1 1 1
out2 1 0
out3 0 1

& &
x y z c1 c2
1 0 - 1 0
1 - 1 0 1

x

y

x

z

c1 c2

Table 5: Encoding for symbolic outputs of Table 4(a) Figure 2. Implementation of two-level logic for Table 5 encoding
 Thus, given a set of GPI’s, we implicity perform a check for path delay fault testability using boolean
satisfiability techniques and generate constraints. Any encoding that satisfies these constraints are guaranteed to
produce a hazard-free robust path delay fault testable two-level logic.

5. CONCLUSIONS
 In this extended abstract, we have described an exact technique for performing output encoding such that the
final two-level logic, obtained after performing the encoding, is hazard-free robust path delay fault testable. For
that purpose, we have generated delay fault testability constraints which will be used by a constraint satisfaction
solver to obtain the encoding. It can be shown that if we do not have a bound on the number of bits used to encode
the symbolic outputs, then we can always satisfy the delay fault testability constraints together with the area
efficiency constraints described in [Devadas 91]. An interesting extension of this work will be to choose delay
fault testability constraints, given the number of bits used to encode the symbolic outputs, such that the minimum
number of test points will be required to render the final logic delay fault testable. Once our technique generates a
hazard-free robustly path delay fault testable two-level logic, it is possible to use existing testability preserving
transformations to convert it into a multi-level logic implementation that is also hazard-free robustly path delay
fault testable. This method has an added advantage due to the fact that the hazard-free robust delay tests for the
paths in the final two-level logic are automatically derived as a result of the encoding process.

6. REFERENCES
[Devadas 91] Devadas, S. and A. R. Newton, “Exact Algorithms for Output Encoding, State Assignment

and Four Level boolean Minimization,”IEEE Trans. on CAD, 10(1), pp. 13-27, Jan. 1991.
[Devadas 92a] Devadas, S. and K. Keutzer, “Synthesis of Robust Delay-Fault-Testable Circuits: Theory”,

IEEE Trans. on CAD, vol. 11, no. 1, pp. 87-101, Jan. 1992.
[Devadas 92b] Devadas, S. and K. Keutzer, “Synthesis of Robust Delay-Fault-Testable Circuits: Practice”,

IEEE Trans. on CAD, vol. 11, no. 3, pp. 277-300, Mar. 1992.
[Kundu 91] Kundu, S., S. M. Reddy and N. K. Jha, “Design of Robustly Testable Combinational Logic

Circuits,” IEEE Trans. on CAD, vol. 10, no. 8, pp. 1036-1048, Aug. 1991.
[Maleh 94] Maleh, A. E. and J. Rajski, “Delay-Fault Testability Preservation of the Concurrent Decomposition

and Factorization Transformations,”Proc. VLSI Test Symp., pp. 15-21, 1994.
[McCluskey 56] McCluskey, E. J., “Minimization of Boolean Functions,”Bell Lab. Tech. Journal, pp. 1417-1444,

Nov. 1956.
[McCluskey 86] McCluskey, E. J.,Logic Design Principles with Emphasis on Testable Semicustom circuits,

Prentice-Hall, Eaglewood Cliffs, NJ, USA, 1986.

