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Abstract 

 
TARO test patterns are transition fault test patterns 

that sensitize each transition fault to all of the outputs 
that can be reached from the fault location.  We were 
not able to identify any ATPG tool that can generate 
TARO test patterns directly.  This paper describes a 
technique to use an existing transition fault ATPG tool 
to efficiently generate TARO test patterns. This 
technique was used to generate TARO patterns for the 
ELF35 test chip.  When these patterns were applied to 
the ELF 35 chips, all of the defective chips were 
discovered (no test escapes). 
 
 
1. Introduction 
 

When we were studying the test results for the ELF-
Murphy chips [1, 2, 3], we noticed that some of the 
defective chips passed our transition fault test 
patterns.  Further study showed that the test patterns 
sensitized the transition faults to some, but not all, of 
the reachable outputs.  When the transition patterns 
were augmented so that all of the outputs were used, 
there were no longer any test escapes [4]. 

We wanted to have a technique for automatically 
generating TARO patterns without writing an ATPG 
tool from scratch.  This paper describes a procedure for 
modifying an existing transition fault ATPG tool so as 
to obtain TARO patterns.  This procedure was used to 
generate TARO patterns for the ELF35 chip [4].  No 
defective chip escaped these patterns.  The results of 
applying other types of test sets are shown to permit 
comparison. 

This paper is organized as follows.  In Sec. 2, the 
background for TARO generation is presented and in 
Sec. 3, the generation procedure is described.  The 

experimental results are discussed in Sec. 4, and Sec. 5 
concludes the paper. 
 
2. Preliminaries 
 

TARO test propagates each transition fault to all of 
its reachable outputs and the required information for 
generation is a list of reachable outputs (outputs 
through which a fault can be propagated and detected) 
for each fault.  In previous work, exhaustive 
simulations were used to obtain reachable outputs [4, 
5].  An alternative approach is to use detectable faults.  
Detectable faults for an output are defined as a list of 
faults that can be observed through the output.  Since 
they are reversible concepts, lists of reachable outputs 
for each fault can be constructed from lists of 
detectable faults for each output.  One way is to 
perform logical cone analysis on netlist.  All fault sites 
that are included in a logical cone of an output are 
candidates for detectable faults, but it requires 
additional simulations because there is no guarantee 
that all these faults can be activated and a path from a 
site to the output can be sensitized. 

Another way to obtain reachable output information 
is to use an output mask, which is a constraint for an 
ATPG tool that prohibits propagation of faults through 
the masked output or force the ATPG tool to ignore a 
detection of a fault if the masked output was used to 
observe the fault.  If a test is generated with all the 
outputs (primary outputs and scan flip-flops) masked 
except one output (unmasked output), then, detected 
faults of this test are detectable faults of the unmasked 
output for given effort level, which is the number of 
backtracks the ATPG tool tries before it gives up on a 
fault and categorizes it as an undetectable fault.  An 
example of this operation is presented in Fig. 1.  The 
square marks represent fault sites and the circles 



represent outputs (primary outputs and scan flip-flops).  
The arrows from a fault site to an output represent 
fault-output pairs or transition paths.  If output masks 
are placed on outputs 2 and 3, a test pattern generated 
with this setup will only expose detectable faults of 
output 1. 

Iteration of this procedure over all the outputs will 
produce lists of detectable faults for all the outputs.  A 
matrix of outputs versus faults can be constructed from 
these lists and transposed to make a matrix of faults 
versus outputs, which represents reachable outputs of 
faults.  The number of detectable faults obtained this 
way varies depending on the effort level of the ATPG 
tool.  Hence, the effort level in detectable fault analysis 
can be used as a primary tuning knob to control the 
thoroughness of the TARO test. 
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Another concept required for TARO generation is a 

fault-output pair.  Unlike a transition fault test where a 
fault is detected if it is observed through any of its 
reachable output, in TARO test generation, there is a 
need to distinguish which output is used to observe a 
fault.  A fault-output pair is defined as a pair of a fault 
site and one of its reachable outputs.  It implies a 
transition path from the fault site to the output but it 
neglects various functional paths from the site to the 
output.  By treating each fault-output pair as an 
independent fault, the TARO test generation can be 
simplified to a test generation that targets fault-output 
pairs. 

 
3. Procedure of TARO generation 

 
In this section, a detailed procedure of TARO 

generation is presented.  First, a derivation of fault-
output pairs is explained in Sec. 3.1 followed by a 
procedure for TARO patterns generation in Sec. 3.2.  
In Sec 3.3, a way of quantifying TARO test coverage is 
presented. 
 
3.1. Derivation of Fault-Output Pairs 

 
To find the fault-output pairs of a circuit, all the 

outputs except one are masked and a transition ATPG 

is performed as explained in Sec. 2, the detected faults 
in this setup form fault-output pairs with the associated 
output (unmasked output).  If this procedure is iterated 
over all the outputs, the union of all the revealed fault-
output pairs will form reachable output information.  A 
flowchart depicting the overall procedure of derivation 
of fault-output pairs is presented in Fig. 2. 
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The union of all the tests from individual ATPG 
iterations in this procedure is a TARO test set and we 
denote this generation as simplistic TARO test 
generation.  However, it results in inefficient TARO 
test sets since each pattern exploits only one output at a 
time.  A more efficient TARO generation algorithm is 
presented in Sec. 3.2. 

 
3.2. TARO pattern generation 

 
Simplistic TARO generation in previous results in 

an inefficient TARO test set because multiple outputs 
can be targeted simultaneously to reduce the test set 
size.  However, the existing ATPG tools don’t provide 
the option of fault-output pair recognition.  This section 
introduces an algorithm to be combined with the 
existing ATPG tools [6, 7] capabilities to provide an 
efficient TARO generation algorithm.  The algorithm 
obtains the reachable output information from the 
procedure explained in the previous section. 

If all reachable outputs except one are masked, it is 
guaranteed that the test will use only one output 
(unmasked output) to detect faults.  Hence, if two faults 
do not share any reachable outputs, the ATPG tool can 
be invoked to generate patterns for these faults 
simultaneously while the corresponding outputs are all 



unmasked.  In Fig. 1, faults A and C do not share any 
reachable outputs, so, generating patterns for both 
faults together does not compromise the TARO 
coverage for the test set.  However, since some logical 
cones starting from outputs overlap with each other, 
generating patterns for these faults simultaneously can 
lead the tool to compromise the TARO coverage of the 
fault-output pairs.  In Fig. 1, to propagate fault B to 
output 2, masks should be placed on output 1 and 3 and 
output 2 should be unmasked.  On the other hand, to 
propagate fault A to output 1, output 2 should be 
masked and output 1 has to be unmasked.  If we 
unmask output 1 and 2, the ATPG tool will not 
generate TARO patterns for faults A and B because the 
generated patterns will not propagate each fault to all 
reachable outputs.  This is an example of conflicting 
assignments.  Fault B cannot be directed to output 2 
when fault A is simultaneously assigned to output 1.  
To avoid conflicting assignments, two lists of outputs 
are maintained.  One is a ‘mask list’ and the other is an 
‘unmask list’.  These lists can be referred to when fault-
output pairs are being assigned. 

Similarly, a fault-output pair-based fault simulation 
can be performed with output masks.  If output masks 
are assigned to all the outputs except one and fault 
simulation is performed, the detected faults in this 
setting are faults that are detected only through the 
unmasked output and detections of fault-output pairs 
are verified.  This procedure can be iterated over all the 
outputs to obtain a complete fault-output pair grading. 

The compacted TARO test generation procedure, 
based on these ideas, is described next. 

Step 1: Pre-run  
(obtaining reachable outputs lists for all the fault) 
Tests are generated with one unmask setup and 

iterated over all outputs to make lists of detected faults 
which, in turn, are used to build a matrix of lists of 
detectable faults of all outputs.  This matrix is 
transposed to obtain lists of reachable outputs for all 
faults.  This step is explained in Sec. 3.1. 

Step 2: Initial run  
(transition fault ATPG without constraints) 
The purpose of this step is to utilize the ATPG 

transition test generation to target as much as possible 
from the fault-output pairs that we identified in step 
one.  So, we just run the ATPG tool without any output 
masking.   

Step 3: Fault Simulations 
(Fault simulation with output mask constraints) 
The generated test is fault simulated with output 

masks to check which outputs are used for each fault.  
The detected fault-output pairs are dropped from the 
list of undetected pairs.   

 

Step 4: Iteration  
(ATPG with constraints and fault simulation) 
This step consists of iterations of test generations 

and fault simulations to detect the rest of the 
undetected fault-output pairs.  Masks are assigned such 
that tests are generated for only non-conflicting fault-
output pairs simultaneously.  Fault simulations to verify 
which output is used for each fault follow and all the 
detected fault-output pairs are marked after simulations.  
This procedure iterates with the rest of the undetected 
pairs and the resulting tests are combined with the test 
set from the initial run (step 2) to make a TARO test set.  
The overall procedure is presented as a flowchart in Fig. 
3. 
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In step 3, the selection of fault-output pairs affect 
the degree of compaction achieved.  Pessimistically, if 
each assigned fault is assumed to be propagated to only 
one of its outputs, the number of detected pairs of the 
test will be low.  Optimistically, a smaller number of 
masked outputs would increase the chances to detect 
additional fault-output pairs through unmasked outputs.  
As a result, the goal is to assign as many faults as 
possible with the least possible number of output masks.  
The assignment procedure is similar to the widely 
studied graph coloring problem and a greedy algorithm 
is known to work well [8].  Hence, a greedy algorithm 
is used as shown in Fig. 4. 

As stated earlier, a mask list and an unmask list are 
maintained and both lists are empty at the beginning of 
each iteration.  The assignment starts by picking a fault 
with unused outputs (undetected fault-output pair) with 
predetermined selection criteria discussed later in the 
section.  There are two conditions that must be satisfied 
for a fault to be targeted in the current iteration: 1) At 
least one of its unused reachable outputs is not in the 
mask list.  Unused reachable outputs of the fault site 
are compared with the mask list and the fault is 



dropped if all the unused reachable outputs are masked.  
This fault cannot be assigned in this iteration since 
there is no output to detect the fault.  2) All of its used 
reachable outputs must be in the mask list.   Used 
outputs are compared with an unmask list and if any 
used output is unmasked, the fault is dropped because 
if a used output is not masked, the ATPG can generate 
a test that propagates a fault to an already used output.  
If a fault satisfies these two conditions, the fault is 
assigned for the iteration.  Then, all the used outputs of 
this fault are added to the mask list and any unused 
outputs that are not in mask list are added to the 
unmask list.  The iteration continues until there are no 
more faults left. 
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When picking a fault to assign, five different 
heuristics are used.  One chooses faults with most 
number of reachable outputs while second selects faults 
with most number of unused outputs.  The third way 
picks faults with least number of used outputs.  These 
three heuristics are based on the reasoning that the 
faults with more widely spanning reachable outputs 
should be completed earlier than others so that there 
would be no masks of these faults that blocks 
assignments of others.  Another heuristic is to choose 
faults with least number of unused outputs to complete 
faults that can be finished easier with fewer numbers of 
iterations.  The last is to randomly pick faults.  The 
resulting compaction ratios of five different heuristics 
are presented in experimental result section. 

 
3.3. Evaluation of TARO test pattern set 

 
Traditional transition fault coverage cannot be 

applied to TARO patterns because it does not 
distinguish fault-output pairs that share a fault site.  
However, in evaluating a TARO test, each fault site can 

have multiple reachable outputs and is detected fully 
only if all of its reachable outputs are used.  Hence, in 
evaluating TARO test, weights are assigned to partially 
detected faults in order to reflect the incompleteness.  
For example, if a fault site has 10 reachable outputs 
and 7 of them are used to detect this fault, the fault has 
7/10 weights on fault coverage.  In case of fully 
detected faults, a full weight of 1 is given.  The TARO 
coverage is the average of all the weights of faults sites 
calculated this way. 
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TARO fault coverage requires lists of reachable 
outputs for all faults as a reference.  The most accurate 
way to obtain this is to use a detectable fault list 
obtained by logical cone analysis.   We derive the fault-
output pair information by running the ATPG tool as 
explained in Sec. 3.1.  Due to the ATPG effort level, 
there maybe some pairs that are not identified.  So for 
better accuracy, in this work, the fault-output pair 
information is obtained from the union of all fault-
output pairs in TARO and transition fault test. 

 
4. Experimental Result 

 
The TARO test patterns were generated and 

applied to the ELF35 test chips.  The ELF35 chip [3] 
was designed and manufactured with LSI’s G10p 
technology.  The nominal supply voltage for this chip 
is 3.3V and the effective channel length is 0.35um.  It 
contains multiple copies of four combinational cores 
and two sequential cores.  The sequential cores are: 1) 
LSI2901, which is an arithmetic processor from the LSI 
library and 2) TOPS2901, the same design synthesized 
using the TOPS synthesis-for-test tool developed by 
Stanford CRC.  M12, SQR, MA and PB are 
combinational cores.  PB is a pseudo-random-to-binary 
translator that contains many random-pattern-resistant 
faults and the other three combinational cores are data-
path designs.   
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core #gate #PO #FF #output #faults 
m12 1,309 12 NA 12 1,629 
sqr 538 6 NA 6 625 
ma 4,499 33 NA 33 9,973 
pb 17,468 12 NA 12 57,520 

lsi2901 12,338 64 544 608 11,819 
tops2901 18,090 48 961 1,009 22,131 

 
The characteristics of ELF35 cores are shown in 

Table 1.  In the table, the number of gates, primary 



outputs and scan flip-flops are shown in the first three 
columns.  Column 4 contains the number of outputs 
that are considered in TARO generation, which is sum 
of number of primary outputs and scan flip-flops.  The 
last column represents the number of collapsed 
transition faults for each core to be contrasted with the 
number of fault-output pairs presented also in this 
section. 

For combinational cores, TARO test patterns were 
generated and the results are presented in Tables 2.  
For simplistic TARO from Sec. 3.1, one set is 
compacted using dynamic compaction and the other is 
generated without it.  However, both sets are generated 
with effort level of 100.  Although the dynamic 
compaction resulted in a smaller pattern size, it could 
not be applied in the efficient TARO due to some 
ATPG tool limitations.  Hence, for more accurate 
comparison, a fault-output pair list from simplistic 
TARO without dynamic compaction is used as a 
reference in TARO generation.  All the patterns except 
the MA core pattern are statically merged and the size 
after compaction is also presented.  In the tables, 
pattern sizes before static merge and after the merge 
are shown in columns 3, 4.  The numbers of detected 
fault-output pairs are shown in column 5.  The first row 
is for simplistic TARO with dynamic compaction and 
the second row shows simplistic TARO without 
dynamic compaction.  The rest of the rows represent 
TARO with 5 different heuristics. 
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core pattern # pat # cmp pat # f-o pairs 
m12 dyn. cmp 1,044 948 9,845 

 no cmp 2,973 1,464 10,771 
 heuristic1 2,051 1,236 11,391 
 heuristic2 1,885 1,176 12,960 
 heuristic3 1,899 1,176 13,739 
 heuristic4 2,257 1,271 12,458 
 heuristic5 1,918 1,188 12,561 

sqr dyn. cmp 117 102 1,357 
 no cmp 395 187 1,668 
 heuristic1 285 179 1,932 
 heuristic2 252 173 2,066 
 heuristic3 228 158 2,229 
 heuristic4 274 171 2,089 
 heuristic5 281 173 2,153 

pb dyn. cmp 21,063 10,286 139,416 
 no cmp 57,204 10,707 140,225 
 heuristic1 30,222 9,069 139,439 
 heuristic2 28,068 8,969 140,908 
 heuristic3 28,727 9,038 140,077 
 heuristic4 29,129 9,059 139,466 
 heuristic5 28,960 9,044 139,554 

ma dyn. cmp 6984 6,686 94,016 
 no cmp 16,586 10,851 85,329 
 heuristic1 7,915 - 138,482 
 heuristic2 11,015 - 165,111 
 heuristic3 13,047 - 155,660 
 heuristic4 9,073 - 140,894 
 heuristic5 9,400 - 148,763 

 

� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�) ����� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� �� ����
cut pat # pat. cpu time ssf cov tr cov taro cov 

m12 ssf 61 3.68 99.01% - - 
 tr 70 12.29 99.16% 97.92% 43.22% 

 15ndet 327 9.83 99.47% - - 
 taro 1,044 189.86 100% 99.88% 97.34% 

sqr ssf 30 2.55 97.00% - - 
 tr 112 5.41 96.90% 78.56% 73.02% 
 15ndet 137 3.94 97.00% - - 
 taro 117 22.09 96.60% 94.12% 92.22% 

ma ssf 69 29.77 97.87% - - 
 tr 103 101.62 97.84% 97.47% 60.37% 
 15ndet 416 71.19 98.16% - - 
 taro 6,984 8503.28 98.25% 96.84% 89.20% 

pb ssf 4,389 33.38 100% - - 
 tr 21,440 732.26 100% 99.98% 59.15% 
 15ndet 64,197 572.39 100% - - 
 taro 21,063 1509.30 100% 100% 40.85% 

lsi2901 ssf 6,357 31.11 99.93% - - 
 tr 10,821 1443.03 99.51% 92.87% 46.53% 
 15ndet 94,910 1339.50 99.93% - - 
 taro 307,048 19219.13 99.87% 94.95% 97.57% 

tops2901 ssf 432 5.03 99.96% - - 
 tr 1,001 73.11 99.95% 83.66% 96.42% 
 15ndet 3,791 19.04 99.96% - - 
 taro 18,938 5372.30 97.64% 82.10% 97.37% 



For sequential cores, simplistic TARO with 
dynamic compaction was applied and the resulting 
test patterns are presented in Table 3.  Since each 
scan flip-flops are also counted as outputs in 
sequential cores, the total number of outputs a fault 
can propagate increased and, as a result, the number 
of fault-output pairs is relatively higher than 
combinational cores.  
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pattern # patterns # cmp pat # f-o pairs 
tops2901 18,938 8,611 84,925 
lsi2901 307,048 298,018  2,666,322 

 
The generated TARO test patterns were applied 

to all the combinational and sequential cores.  All the 
defective chips from previously applied tests failed 
the test and the TARO had no escapes.  Table 4 
shows comparisons of SSF tests, transition tests, N-
detect tests with N = 15 and TARO tests for ELF35 
cores.  Column 3 represents the test lengths, which 
are numbers of vectors for SSF and N-detect test and 
numbers of vector pairs for TR and TARO test.  
Column 4 shows CPU time in seconds.  Next 3 
columns represent SSF coverage, transition fault 
coverage, and TARO coverage, which is defined in 
Sec. 3.3.  Lists of all fault-output pairs detected by 
TR and TARO test were referenced when calculating 
TARO coverage. 
Finally, Table 5 shows test escapes of all four tests 
applied.  While all other tests have at least 3 escapes, 
TARO test detected all the bad chips (no escapes). 
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core m12 sqr ma pb lsi2901 tops2901 
ssf  2 2 0 0 2 0 
tran 1 1 0 0 2 0 

15ndet 1 1 0 0 2 0 
taro 0 0 0 0 0 0 

 
5. Conclusion 

 
This paper shows how to generate TARO test 

patterns efficiently using currently available 
commercial ATPG tools.  It also demonstrates the 
effectiveness of the patterns generated using this 
technique; TARO test patterns were generated for the 
ELF35 chips and used to test these chips.  The results 
of applying both the TARO patterns as well as 
standard patterns (single stuck-at, N-detect, 
transition) are presented.  The TARO patterns 
detected all of the defective ELF35 chips including 
those that escaped SSF, N-detect and transition 
tests.  This demonstrates the importance of 

considering TO which outputs the faults are 
sensitized when doing ATPG. 
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