
Effective TARO Pattern Generation

Intaik Park1, Ahmad Al-Yamani1,2 and Edward J. McCluskey1
1Center for Reliable Computing

Stanford University
http://crc.stanford.edu

2TNT, Advanced Development
LSI Logic Corporation
http://www.lsilogic.com

{intaik | alyamani | ejm}@crc.stanford.edu

Abstract

TARO test patterns are transition fault test patterns

that sensitize each transition fault to all of the outputs
that can be reached from the fault location. We were
not able to identify any ATPG tool that can generate
TARO test patterns directly. This paper describes a
technique to use an existing transition fault ATPG tool
to efficiently generate TARO test patterns. This
technique was used to generate TARO patterns for the
ELF35 test chip. When these patterns were applied to
the ELF 35 chips, all of the defective chips were
discovered (no test escapes).

1. Introduction

When we were studying the test results for the ELF-
Murphy chips [1, 2, 3], we noticed that some of the
defective chips passed our transition fault test
patterns. Further study showed that the test patterns
sensitized the transition faults to some, but not all, of
the reachable outputs. When the transition patterns
were augmented so that all of the outputs were used,
there were no longer any test escapes [4].

We wanted to have a technique for automatically
generating TARO patterns without writing an ATPG
tool from scratch. This paper describes a procedure for
modifying an existing transition fault ATPG tool so as
to obtain TARO patterns. This procedure was used to
generate TARO patterns for the ELF35 chip [4]. No
defective chip escaped these patterns. The results of
applying other types of test sets are shown to permit
comparison.

This paper is organized as follows. In Sec. 2, the
background for TARO generation is presented and in
Sec. 3, the generation procedure is described. The

experimental results are discussed in Sec. 4, and Sec. 5
concludes the paper.

2. Preliminaries

TARO test propagates each transition fault to all of
its reachable outputs and the required information for
generation is a list of reachable outputs (outputs
through which a fault can be propagated and detected)
for each fault. In previous work, exhaustive
simulations were used to obtain reachable outputs [4,
5]. An alternative approach is to use detectable faults.
Detectable faults for an output are defined as a list of
faults that can be observed through the output. Since
they are reversible concepts, lists of reachable outputs
for each fault can be constructed from lists of
detectable faults for each output. One way is to
perform logical cone analysis on netlist. All fault sites
that are included in a logical cone of an output are
candidates for detectable faults, but it requires
additional simulations because there is no guarantee
that all these faults can be activated and a path from a
site to the output can be sensitized.

Another way to obtain reachable output information
is to use an output mask, which is a constraint for an
ATPG tool that prohibits propagation of faults through
the masked output or force the ATPG tool to ignore a
detection of a fault if the masked output was used to
observe the fault. If a test is generated with all the
outputs (primary outputs and scan flip-flops) masked
except one output (unmasked output), then, detected
faults of this test are detectable faults of the unmasked
output for given effort level, which is the number of
backtracks the ATPG tool tries before it gives up on a
fault and categorizes it as an undetectable fault. An
example of this operation is presented in Fig. 1. The
square marks represent fault sites and the circles

represent outputs (primary outputs and scan flip-flops).
The arrows from a fault site to an output represent
fault-output pairs or transition paths. If output masks
are placed on outputs 2 and 3, a test pattern generated
with this setup will only expose detectable faults of
output 1.

Iteration of this procedure over all the outputs will
produce lists of detectable faults for all the outputs. A
matrix of outputs versus faults can be constructed from
these lists and transposed to make a matrix of faults
versus outputs, which represents reachable outputs of
faults. The number of detectable faults obtained this
way varies depending on the effort level of the ATPG
tool. Hence, the effort level in detectable fault analysis
can be used as a primary tuning knob to control the
thoroughness of the TARO test.

��������������������������������	�
 � � �
 ��� ��� ���	�
 � � �
 ��� ��� ���	�
 � � �
 ��� ��� ���	�
 � � �
 ��� ��� �������� ��� ���� � ���� ��� ���� � ���� ��� ���� � ���� ��� ���� � ��� ����

Another concept required for TARO generation is a

fault-output pair. Unlike a transition fault test where a
fault is detected if it is observed through any of its
reachable output, in TARO test generation, there is a
need to distinguish which output is used to observe a
fault. A fault-output pair is defined as a pair of a fault
site and one of its reachable outputs. It implies a
transition path from the fault site to the output but it
neglects various functional paths from the site to the
output. By treating each fault-output pair as an
independent fault, the TARO test generation can be
simplified to a test generation that targets fault-output
pairs.

3. Procedure of TARO generation

In this section, a detailed procedure of TARO

generation is presented. First, a derivation of fault-
output pairs is explained in Sec. 3.1 followed by a
procedure for TARO patterns generation in Sec. 3.2.
In Sec 3.3, a way of quantifying TARO test coverage is
presented.

3.1. Derivation of Fault-Output Pairs

To find the fault-output pairs of a circuit, all the

outputs except one are masked and a transition ATPG

is performed as explained in Sec. 2, the detected faults
in this setup form fault-output pairs with the associated
output (unmasked output). If this procedure is iterated
over all the outputs, the union of all the revealed fault-
output pairs will form reachable output information. A
flowchart depicting the overall procedure of derivation
of fault-output pairs is presented in Fig. 2.

��������������������������������	�	�	�	��������� � ��� � �� ���� ������� � ��� � �� ���� ������� � ��� � �� ���� ������� � ��� � �� ���� �������� ��� ���� � ���� ��� ���� � ���� ��� ���� � ���� ��� ���� � ��� ����

The union of all the tests from individual ATPG
iterations in this procedure is a TARO test set and we
denote this generation as simplistic TARO test
generation. However, it results in inefficient TARO
test sets since each pattern exploits only one output at a
time. A more efficient TARO generation algorithm is
presented in Sec. 3.2.

3.2. TARO pattern generation

Simplistic TARO generation in previous results in

an inefficient TARO test set because multiple outputs
can be targeted simultaneously to reduce the test set
size. However, the existing ATPG tools don’t provide
the option of fault-output pair recognition. This section
introduces an algorithm to be combined with the
existing ATPG tools [6, 7] capabilities to provide an
efficient TARO generation algorithm. The algorithm
obtains the reachable output information from the
procedure explained in the previous section.

If all reachable outputs except one are masked, it is
guaranteed that the test will use only one output
(unmasked output) to detect faults. Hence, if two faults
do not share any reachable outputs, the ATPG tool can
be invoked to generate patterns for these faults
simultaneously while the corresponding outputs are all

unmasked. In Fig. 1, faults A and C do not share any
reachable outputs, so, generating patterns for both
faults together does not compromise the TARO
coverage for the test set. However, since some logical
cones starting from outputs overlap with each other,
generating patterns for these faults simultaneously can
lead the tool to compromise the TARO coverage of the
fault-output pairs. In Fig. 1, to propagate fault B to
output 2, masks should be placed on output 1 and 3 and
output 2 should be unmasked. On the other hand, to
propagate fault A to output 1, output 2 should be
masked and output 1 has to be unmasked. If we
unmask output 1 and 2, the ATPG tool will not
generate TARO patterns for faults A and B because the
generated patterns will not propagate each fault to all
reachable outputs. This is an example of conflicting
assignments. Fault B cannot be directed to output 2
when fault A is simultaneously assigned to output 1.
To avoid conflicting assignments, two lists of outputs
are maintained. One is a ‘mask list’ and the other is an
‘unmask list’. These lists can be referred to when fault-
output pairs are being assigned.

Similarly, a fault-output pair-based fault simulation
can be performed with output masks. If output masks
are assigned to all the outputs except one and fault
simulation is performed, the detected faults in this
setting are faults that are detected only through the
unmasked output and detections of fault-output pairs
are verified. This procedure can be iterated over all the
outputs to obtain a complete fault-output pair grading.

The compacted TARO test generation procedure,
based on these ideas, is described next.

Step 1: Pre-run
(obtaining reachable outputs lists for all the fault)
Tests are generated with one unmask setup and

iterated over all outputs to make lists of detected faults
which, in turn, are used to build a matrix of lists of
detectable faults of all outputs. This matrix is
transposed to obtain lists of reachable outputs for all
faults. This step is explained in Sec. 3.1.

Step 2: Initial run
(transition fault ATPG without constraints)
The purpose of this step is to utilize the ATPG

transition test generation to target as much as possible
from the fault-output pairs that we identified in step
one. So, we just run the ATPG tool without any output
masking.

Step 3: Fault Simulations
(Fault simulation with output mask constraints)
The generated test is fault simulated with output

masks to check which outputs are used for each fault.
The detected fault-output pairs are dropped from the
list of undetected pairs.

Step 4: Iteration
(ATPG with constraints and fault simulation)
This step consists of iterations of test generations

and fault simulations to detect the rest of the
undetected fault-output pairs. Masks are assigned such
that tests are generated for only non-conflicting fault-
output pairs simultaneously. Fault simulations to verify
which output is used for each fault follow and all the
detected fault-output pairs are marked after simulations.
This procedure iterates with the rest of the undetected
pairs and the resulting tests are combined with the test
set from the initial run (step 2) to make a TARO test set.
The overall procedure is presented as a flowchart in Fig.
3.

�������� 	��������� 	��������� 	��������� 	������ ��� ���� �� � �� ����� ��� � ����� ��� ��� �� ��� ���� �� � �� ����� ��� � ����� ��� ��� �� ��� ���� �� � �� ����� ��� � ����� ��� ��� �� ��� ���� �� � �� ����� ��� � ����� ��� ��� � ����

In step 3, the selection of fault-output pairs affect
the degree of compaction achieved. Pessimistically, if
each assigned fault is assumed to be propagated to only
one of its outputs, the number of detected pairs of the
test will be low. Optimistically, a smaller number of
masked outputs would increase the chances to detect
additional fault-output pairs through unmasked outputs.
As a result, the goal is to assign as many faults as
possible with the least possible number of output masks.
The assignment procedure is similar to the widely
studied graph coloring problem and a greedy algorithm
is known to work well [8]. Hence, a greedy algorithm
is used as shown in Fig. 4.

As stated earlier, a mask list and an unmask list are
maintained and both lists are empty at the beginning of
each iteration. The assignment starts by picking a fault
with unused outputs (undetected fault-output pair) with
predetermined selection criteria discussed later in the
section. There are two conditions that must be satisfied
for a fault to be targeted in the current iteration: 1) At
least one of its unused reachable outputs is not in the
mask list. Unused reachable outputs of the fault site
are compared with the mask list and the fault is

dropped if all the unused reachable outputs are masked.
This fault cannot be assigned in this iteration since
there is no output to detect the fault. 2) All of its used
reachable outputs must be in the mask list. Used
outputs are compared with an unmask list and if any
used output is unmasked, the fault is dropped because
if a used output is not masked, the ATPG can generate
a test that propagates a fault to an already used output.
If a fault satisfies these two conditions, the fault is
assigned for the iteration. Then, all the used outputs of
this fault are added to the mask list and any unused
outputs that are not in mask list are added to the
unmask list. The iteration continues until there are no
more faults left.

�������! 	��������! 	��������! 	��������! 	������ � ��� " �� ��� �� � �� ���� � ��� " �� ��� �� � �� ���� � ��� " �� ��� �� � �� ���� � ��� " �� ��� �� � �� �������

When picking a fault to assign, five different
heuristics are used. One chooses faults with most
number of reachable outputs while second selects faults
with most number of unused outputs. The third way
picks faults with least number of used outputs. These
three heuristics are based on the reasoning that the
faults with more widely spanning reachable outputs
should be completed earlier than others so that there
would be no masks of these faults that blocks
assignments of others. Another heuristic is to choose
faults with least number of unused outputs to complete
faults that can be finished easier with fewer numbers of
iterations. The last is to randomly pick faults. The
resulting compaction ratios of five different heuristics
are presented in experimental result section.

3.3. Evaluation of TARO test pattern set

Traditional transition fault coverage cannot be

applied to TARO patterns because it does not
distinguish fault-output pairs that share a fault site.
However, in evaluating a TARO test, each fault site can

have multiple reachable outputs and is detected fully
only if all of its reachable outputs are used. Hence, in
evaluating TARO test, weights are assigned to partially
detected faults in order to reflect the incompleteness.
For example, if a fault site has 10 reachable outputs
and 7 of them are used to detect this fault, the fault has
7/10 weights on fault coverage. In case of fully
detected faults, a full weight of 1 is given. The TARO
coverage is the average of all the weights of faults sites
calculated this way.

faultsall

faultsofweights
FCTARO

outputreachable
usedoutput

faultofWeight

#

#
#

�=

=

TARO fault coverage requires lists of reachable
outputs for all faults as a reference. The most accurate
way to obtain this is to use a detectable fault list
obtained by logical cone analysis. We derive the fault-
output pair information by running the ATPG tool as
explained in Sec. 3.1. Due to the ATPG effort level,
there maybe some pairs that are not identified. So for
better accuracy, in this work, the fault-output pair
information is obtained from the union of all fault-
output pairs in TARO and transition fault test.

4. Experimental Result

The TARO test patterns were generated and

applied to the ELF35 test chips. The ELF35 chip [3]
was designed and manufactured with LSI’s G10p
technology. The nominal supply voltage for this chip
is 3.3V and the effective channel length is 0.35um. It
contains multiple copies of four combinational cores
and two sequential cores. The sequential cores are: 1)
LSI2901, which is an arithmetic processor from the LSI
library and 2) TOPS2901, the same design synthesized
using the TOPS synthesis-for-test tool developed by
Stanford CRC. M12, SQR, MA and PB are
combinational cores. PB is a pseudo-random-to-binary
translator that contains many random-pattern-resistant
faults and the other three combinational cores are data-
path designs.

� � # ���� � # ���� � # ���� � # �������	�$ % �� & �� � ���	�$ % �� & �� � ���	�$ % �� & �� � ���	�$ % �� & �� � ��� ����

core #gate #PO #FF #output #faults
m12 1,309 12 NA 12 1,629
sqr 538 6 NA 6 625
ma 4,499 33 NA 33 9,973
pb 17,468 12 NA 12 57,520

lsi2901 12,338 64 544 608 11,819
tops2901 18,090 48 961 1,009 22,131

The characteristics of ELF35 cores are shown in

Table 1. In the table, the number of gates, primary

outputs and scan flip-flops are shown in the first three
columns. Column 4 contains the number of outputs
that are considered in TARO generation, which is sum
of number of primary outputs and scan flip-flops. The
last column represents the number of collapsed
transition faults for each core to be contrasted with the
number of fault-output pairs presented also in this
section.

For combinational cores, TARO test patterns were
generated and the results are presented in Tables 2.
For simplistic TARO from Sec. 3.1, one set is
compacted using dynamic compaction and the other is
generated without it. However, both sets are generated
with effort level of 100. Although the dynamic
compaction resulted in a smaller pattern size, it could
not be applied in the efficient TARO due to some
ATPG tool limitations. Hence, for more accurate
comparison, a fault-output pair list from simplistic
TARO without dynamic compaction is used as a
reference in TARO generation. All the patterns except
the MA core pattern are statically merged and the size
after compaction is also presented. In the tables,
pattern sizes before static merge and after the merge
are shown in columns 3, 4. The numbers of detected
fault-output pairs are shown in column 5. The first row
is for simplistic TARO with dynamic compaction and
the second row shows simplistic TARO without
dynamic compaction. The rest of the rows represent
TARO with 5 different heuristics.

����

� � # ���� � # ���� � # ���� � # �������	�� � ��� � ����� � ��� ��� � " # �� � ��� � � ��� � ���	�� � ��� � ����� � ��� ��� � " # �� � ��� � � ��� � ���	�� � ��� � ����� � ��� ��� � " # �� � ��� � � ��� � ���	�� � ��� � ����� � ��� ��� � " # �� � ��� � � ��� � ��� ����
core pattern # pat # cmp pat # f-o pairs
m12 dyn. cmp 1,044 948 9,845

 no cmp 2,973 1,464 10,771
 heuristic1 2,051 1,236 11,391
 heuristic2 1,885 1,176 12,960
 heuristic3 1,899 1,176 13,739
 heuristic4 2,257 1,271 12,458
 heuristic5 1,918 1,188 12,561

sqr dyn. cmp 117 102 1,357
 no cmp 395 187 1,668
 heuristic1 285 179 1,932
 heuristic2 252 173 2,066
 heuristic3 228 158 2,229
 heuristic4 274 171 2,089
 heuristic5 281 173 2,153

pb dyn. cmp 21,063 10,286 139,416
 no cmp 57,204 10,707 140,225
 heuristic1 30,222 9,069 139,439
 heuristic2 28,068 8,969 140,908
 heuristic3 28,727 9,038 140,077
 heuristic4 29,129 9,059 139,466
 heuristic5 28,960 9,044 139,554

ma dyn. cmp 6984 6,686 94,016
 no cmp 16,586 10,851 85,329
 heuristic1 7,915 - 138,482
 heuristic2 11,015 - 165,111
 heuristic3 13,047 - 155,660
 heuristic4 9,073 - 140,894
 heuristic5 9,400 - 148,763

� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�)� � # ���! 	�
 � " � � ��� � � � �� ��' ' �(���� � � ���� � (�) ����� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� ��� ���� ��� � � �� � ����� �� ����
cut pat # pat. cpu time ssf cov tr cov taro cov

m12 ssf 61 3.68 99.01% - -
 tr 70 12.29 99.16% 97.92% 43.22%

 15ndet 327 9.83 99.47% - -
 taro 1,044 189.86 100% 99.88% 97.34%

sqr ssf 30 2.55 97.00% - -
 tr 112 5.41 96.90% 78.56% 73.02%
 15ndet 137 3.94 97.00% - -
 taro 117 22.09 96.60% 94.12% 92.22%

ma ssf 69 29.77 97.87% - -
 tr 103 101.62 97.84% 97.47% 60.37%
 15ndet 416 71.19 98.16% - -
 taro 6,984 8503.28 98.25% 96.84% 89.20%

pb ssf 4,389 33.38 100% - -
 tr 21,440 732.26 100% 99.98% 59.15%
 15ndet 64,197 572.39 100% - -
 taro 21,063 1509.30 100% 100% 40.85%

lsi2901 ssf 6,357 31.11 99.93% - -
 tr 10,821 1443.03 99.51% 92.87% 46.53%
 15ndet 94,910 1339.50 99.93% - -
 taro 307,048 19219.13 99.87% 94.95% 97.57%

tops2901 ssf 432 5.03 99.96% - -
 tr 1,001 73.11 99.95% 83.66% 96.42%
 15ndet 3,791 19.04 99.96% - -
 taro 18,938 5372.30 97.64% 82.10% 97.37%

For sequential cores, simplistic TARO with
dynamic compaction was applied and the resulting
test patterns are presented in Table 3. Since each
scan flip-flops are also counted as outputs in
sequential cores, the total number of outputs a fault
can propagate increased and, as a result, the number
of fault-output pairs is relatively higher than
combinational cores.

� � # ���� 	�� � ��� � ����� � ��� ��� �* ��� ��� ��� � ���� � # ���� 	�� � ��� � ����� � ��� ��� �* ��� ��� ��� � ���� � # ���� 	�� � ��� � ����� � ��� ��� �* ��� ��� ��� � ���� � # ���� 	�� � ��� � ����� � ��� ��� �* ��� ��� ��� � ��� ����

pattern # patterns # cmp pat # f-o pairs
tops2901 18,938 8,611 84,925
lsi2901 307,048 298,018 2,666,322

The generated TARO test patterns were applied

to all the combinational and sequential cores. All the
defective chips from previously applied tests failed
the test and the TARO had no escapes. Table 4
shows comparisons of SSF tests, transition tests, N-
detect tests with N = 15 and TARO tests for ELF35
cores. Column 3 represents the test lengths, which
are numbers of vectors for SSF and N-detect test and
numbers of vector pairs for TR and TARO test.
Column 4 shows CPU time in seconds. Next 3
columns represent SSF coverage, transition fault
coverage, and TARO coverage, which is defined in
Sec. 3.3. Lists of all fault-output pairs detected by
TR and TARO test were referenced when calculating
TARO coverage.
Finally, Table 5 shows test escapes of all four tests
applied. While all other tests have at least 3 escapes,
TARO test detected all the bad chips (no escapes).

� � # ���& 	�� �� ���� � � � �� �� ��$ % �� &� � # ���& 	�� �� ���� � � � �� �� ��$ % �� &� � # ���& 	�� �� ���� � � � �� �� ��$ % �� &� � # ���& 	�� �� ���� � � � �� �� ��$ % �� & ����

core m12 sqr ma pb lsi2901 tops2901
ssf 2 2 0 0 2 0
tran 1 1 0 0 2 0

15ndet 1 1 0 0 2 0
taro 0 0 0 0 0 0

5. Conclusion

This paper shows how to generate TARO test

patterns efficiently using currently available
commercial ATPG tools. It also demonstrates the
effectiveness of the patterns generated using this
technique; TARO test patterns were generated for the
ELF35 chips and used to test these chips. The results
of applying both the TARO patterns as well as
standard patterns (single stuck-at, N-detect,
transition) are presented. The TARO patterns
detected all of the defective ELF35 chips including
those that escaped SSF, N-detect and transition
tests. This demonstrates the importance of

considering TO which outputs the faults are
sensitized when doing ATPG.

Acknowledgement

This work was supported by LSI Logic under

contract number 16517 and by NSF under contract
number CSL-FY00-28.

The authors are, as usual, indebted to Dr.
Subhasish Mitra of Intel and Stanford CRC for his
very valuable comments and suggestions

References

[1] S. C. Ma, P. Franco, E. J. McCluskey, “An

experimental chip to evaluate test techniques
experiment results,” in Proc. 1995 Intl. Test Conf.,
pp.663-672, 1995

[2] E. J. McCluskey, C.W. Tseng, "Stuck-at Tests vs. Real
Defects," in Proc. 2000 Intl. Test Conf., pp.336-343,
2000.

[3] E. J. McCluskey, A. Al-Yamani, C. W. Tseng, E.
Volkerink, F. F. Ferhani, E. Li, S. Mitra, "ELF-Murphy
data on defects and test sets," in Proc. 2004 VLSI Test
Symp., pp.16-22, 2004

[4] C.W. Tseng, E. J. McCluskey, "Multiple-output
Propagation transition fault test," in Proc. 2001 Intl.
Test Conf., PP.358-366, 2001.

[5] I. Pomeranz, and S. M. Reddy, "On N-detection Test
Sets and Variable N-detection Test Sets for Transition
Faults," in Proc. 1999 VLSI Test Symp., pp.173-179,
1999.

[6] J. D. Lesser, J. J. Shedletsky, "An Experimental Delay
Test Generator for LSI Logic," IEEE trans. on
Computers, Vol. C-29, No.3, pp.235-248, 1980.

[7] J. Waicukauski, et. al., "Transition Fault Simulation,
"IEEE Design and Test, pp. 32-38, April 1987.

[8] T. Etzion, P. R. J. Ostergard, "Greedy and heuristic
algorithms for codes and colorings," IEEE trans. on
Information Theory, Vol 44, Issue 1, pp.382-388,
January 1998.

