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Abstract 

We describe architectures and concurrent error 
detection, fault-location and recovery techniques for 
designing reconfigurable systems with high 
availability, data integrity, and protection from 
temporary, permanent and common-mode failures.  
These systems can also be used for unmanned remote 
applications.  

1. Introduction 
This paper describes dependable architectures for 

adaptive computing systems (ACS) comprising 
microprocessor, memory and reconfigurable logic 
(e.g., Field Programmable Gate Arrays or FPGAs) 
that have been developed in the DARPA sponsored 
ROAR project at Stanford Center for Reliable 
Computing (CRC).  ROAR is an acronym for 
Reliability Obtained by Adaptive Reconfiguration.  
The main idea is to develop: (1) Concurrent Error 
Detection (CED) techniques to detect errors while the 
ACS is in operation; (2) fault-location techniques to 
identify the defective part (e.g., the defective logic 
block or routing resource); and (3) recovery 
techniques to reconfigure the system to operate 
without using the faulty part.  Unlike conventional 
fault-tolerant systems where the Field Replaceable 
Unit (FRU) is a chip or a board, the FRU for an ACS 
is a logic block or a routing resource.  Our work 
demonstrates that it is feasible to design low-cost but 
very effective dependable ACS.  While the major 
thrust of this work is on ACS based on FPGAs, our 
techniques are applicable for other commercial 
reconfigurable hardware.  

2.  Concurrent Error Detection, Fault Location 
and Recovery Techniques 

In this section, we describe concurrent error 
detection, fault-location and recovery techniques 
developed by us for applications mapped on the 
reconfigurable hardware (e.g., FPGAs). 

2.1. Concurrent Error Detection (CED) 
The CED techniques studied in our project are 

diverse duplication [Mitra 99, Mitra 00b, Mitra 00c, 
Mitra 00d], parity prediction [Touba 97, Zeng 99], 
multi-threading [Yu 00] and inverse comparison 
[Huang 00a]. 

Hardware duplication is a simple CED technique 
where two implementations of the same logic 
function are used and their outputs are compared — 
an error is reported when a mismatch occurs.  
Duplication guarantees data integrity in the presence 
of a single failure.  However, data integrity is not 
guaranteed in the presence of multiple failures and 
Common-Mode Failures (CMFs).  CMFs result from 

failures affecting both implementations of a duplex at 
the same time, due to a common cause [Mitra 00a].  
Design diversity was proposed in [Avizienis 84] to 
protect redundant computing systems against 
common-mode failures.  The idea of design diversity 
is to use two “different” implementations of the same 
logic function during duplication so that, common 
failure modes create different effects in the two 
implementations.  However, the concept of design 
diversity as described in [Avizienis 84] was 
qualitative.  We have developed a metric to quantify 
[Mitra 99] that quantifies diversity.  Using this 
metric, we developed techniques for designing 
systems with CED based on diverse duplication 
[Mitra 00b, Mitra 00c].  The superiority of diverse 
duplication over other CED techniques like parity 
prediction was demonstrated in [Mitra 00c]. 

2.2. Fault Location 
Several techniques can be used for locating the 

faulty logic block or interconnect in an FPGA  
[Stroud 97, Mitra 98, Das 99].  Specific features, the 
column readout feature of Virtex FPGAs for example, 
can also be utilized for fault-location [Huang 00b]. 

2.3. Recovery from Temporary Failures 
Temporary failures can be caused due to 

intermittent or transient failures.  For temporary 
failures in the configuration bits of a reconfigurable 
system, a reload of the contents from a safe storage is 
sufficient.  The online partial reconfiguration feature 
of FPGAs can be used to read back and modify the 
data in configuration memory cells of FPGAs without 
stopping the system operation.  However, some of the 
data in configuration frames of FPGAs are memory 
contents in user applications and a simple reload can 
cause memory coherence problems.  A solution to 
this problem using “dirty bits” has been developed in 
[Huang 00b].  For recovery from temporary faults 
that do not cause errors in FPGA configuration, 
rollback techniques [Huang 00a] can be used. 

2.4. Recovery from Permanent Failures 
To repair a reconfigurable system with 

permanent faults, our approach is to use column-
based pre-compiled configurations [Huang 00c].  The 
basic idea is to generate different FPGA 
configuration versions during the design phase.  In 
each configuration version, a column of the FPGA is 
intentionally unused so that the corresponding 
configuration can tolerate permanent faults in the 
unused column.  Since the different configuration 
versions are generated during the design phase, the 
system can switch between different configurations 
rapidly once the faulty FPGA column is located.  For 



 

minimizing the storage overhead of the different 
versions, data compression techniques can be used.   

3.  Dependable ACS Architectures 
3.1. Multi-threaded ACS (MT-ACS) Architecture 

The first ACS architecture is called the MT-ACS 
architecture (Fig. 3.1).  The MT-ACS architecture is 
an extension of the conventional ACS architecture 
and contains a multi-threaded processor, memory, I/O 
devices and a reconfigurable coprocessor connected 
to the bus.  For a given application, a part of the 
application (determined by the compiler) will be 
executed on the processor and the remaining part will 
be implemented on the reconfigurable coprocessor.  
For the portions of the applications mapped on the 
reconfigurable hardware, CED, fault-location and 
recovery techniques described in Sec. 2 can be used.  
Multi-threading can be used to implement fault-
tolerance in the processor.  Fault-tolerance is 
accomplished by using multiple threads of 
computations and algorithms [Saxena 00]. With the 
MT-ACS architecture, recovery from permanent 
faults in the processor requires board swapping or 
replacement of the microprocessor chip (unless 
special recovery structures using standby spares are 
used).  Thus, the MT-ACS architecture needs human 
intervention for recovery and may not be suitable for 
unmanned applications (e.g., remote space 
exploration).  The Dual FPGA architecture described 
in Sec. 3.2 addresses this problem.   
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Figure 3.1. MT-ACS architecture 

3.2. Dual FPGA ACS Architecture 
The Dual FPGA ACS architecture is shown in 

Fig. 3.2.  Each FPGA in Fig. 3.2 is configured to run 
certain user applications with some CED schemes.  
For example, a microprocessor with various CED 
features can be implemented on one of the FPGAs.  
We are currently designing such a “self-healing soft 
microprocessor” with built-in CED and autonomous 
recovery techniques.  In addition, the controller (e.g., 
an 8051 micro-controller) on each FPGA monitors 
the error signal from the CED schemes implemented 
on the other FPGA and performs the configuration 
data recovery when necessary.  Note that, the 
configuration frames of both FPGAs are stored in a 
safe memory space that is either replicated or 
protected by Error Correcting Codes (ECCs) to 
guarantee the correctness.  All the CED, fault-
location and recovery techniques described in Sec. 2 

can be used for the Dual FPGA architecture. 
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Figure 3.2. Dual FPGA ACS architecture 
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