
DEPENDABLE ADAPTIVE COMPUTING SYSTEMS
THE STANFORD CRC ROAR PROJECT

Subhasish Mitra, Wei-Je Huang, Nirmal R. Saxena, Shu-Yi Yu and Edward J. McCluskey
Center For Reliable Computing

Stanford University (http://crc.stanford.edu)
Abstract

We describe architectures and concurrent error
detection, fault-location and recovery techniques for
designing reconfigurable systems with high
availability, data integrity, and protection from
temporary, permanent and common-mode failures.
These systems can also be used for unmanned remote
applications.

1. Introduction
This paper describes dependable architectures for

adaptive computing systems (ACS) comprising
microprocessor, memory and reconfigurable logic
(e.g., Field Programmable Gate Arrays or FPGAs)
that have been developed in the DARPA sponsored
ROAR project at Stanford Center for Reliable
Computing (CRC). ROAR is an acronym for
Reliability Obtained by Adaptive Reconfiguration.
The main idea is to develop: (1) Concurrent Error
Detection (CED) techniques to detect errors while the
ACS is in operation; (2) fault-location techniques to
identify the defective part (e.g., the defective logic
block or routing resource); and (3) recovery
techniques to reconfigure the system to operate
without using the faulty part. Unlike conventional
fault-tolerant systems where the Field Replaceable
Unit (FRU) is a chip or a board, the FRU for an ACS
is a logic block or a routing resource. Our work
demonstrates that it is feasible to design low-cost but
very effective dependable ACS. While the major
thrust of this work is on ACS based on FPGAs, our
techniques are applicable for other commercial
reconfigurable hardware.

2. Concurrent Error Detection, Fault Location
and Recovery Techniques

In this section, we describe concurrent error
detection, fault-location and recovery techniques
developed by us for applications mapped on the
reconfigurable hardware (e.g., FPGAs).

2.1. Concurrent Error Detection (CED)
The CED techniques studied in our project are

diverse duplication [Mitra 99, Mitra 00b, Mitra 00c,
Mitra 00d], parity prediction [Touba 97, Zeng 99],
multi-threading [Yu 00] and inverse comparison
[Huang 00a].

Hardware duplication is a simple CED technique
where two implementations of the same logic
function are used and their outputs are compared —
an error is reported when a mismatch occurs.
Duplication guarantees data integrity in the presence
of a single failure. However, data integrity is not
guaranteed in the presence of multiple failures and
Common-Mode Failures (CMFs). CMFs result from

failures affecting both implementations of a duplex at
the same time, due to a common cause [Mitra 00a].
Design diversity was proposed in [Avizienis 84] to
protect redundant computing systems against
common-mode failures. The idea of design diversity
is to use two “different” implementations of the same
logic function during duplication so that, common
failure modes create different effects in the two
implementations. However, the concept of design
diversity as described in [Avizienis 84] was
qualitative. We have developed a metric to quantify
[Mitra 99] that quantifies diversity. Using this
metric, we developed techniques for designing
systems with CED based on diverse duplication
[Mitra 00b, Mitra 00c]. The superiority of diverse
duplication over other CED techniques like parity
prediction was demonstrated in [Mitra 00c].

2.2. Fault Location
Several techniques can be used for locating the

faulty logic block or interconnect in an FPGA
[Stroud 97, Mitra 98, Das 99]. Specific features, the
column readout feature of Virtex FPGAs for example,
can also be utilized for fault-location [Huang 00b].

2.3. Recovery from Temporary Failures
Temporary failures can be caused due to

intermittent or transient failures. For temporary
failures in the configuration bits of a reconfigurable
system, a reload of the contents from a safe storage is
sufficient. The online partial reconfiguration feature
of FPGAs can be used to read back and modify the
data in configuration memory cells of FPGAs without
stopping the system operation. However, some of the
data in configuration frames of FPGAs are memory
contents in user applications and a simple reload can
cause memory coherence problems. A solution to
this problem using “dirty bits” has been developed in
[Huang 00b]. For recovery from temporary faults
that do not cause errors in FPGA configuration,
rollback techniques [Huang 00a] can be used.

2.4. Recovery from Permanent Failures
To repair a reconfigurable system with

permanent faults, our approach is to use column-
based pre-compiled configurations [Huang 00c]. The
basic idea is to generate different FPGA
configuration versions during the design phase. In
each configuration version, a column of the FPGA is
intentionally unused so that the corresponding
configuration can tolerate permanent faults in the
unused column. Since the different configuration
versions are generated during the design phase, the
system can switch between different configurations
rapidly once the faulty FPGA column is located. For

minimizing the storage overhead of the different
versions, data compression techniques can be used.

3. Dependable ACS Architectures
3.1. Multi-threaded ACS (MT-ACS) Architecture

The first ACS architecture is called the MT-ACS
architecture (Fig. 3.1). The MT-ACS architecture is
an extension of the conventional ACS architecture
and contains a multi-threaded processor, memory, I/O
devices and a reconfigurable coprocessor connected
to the bus. For a given application, a part of the
application (determined by the compiler) will be
executed on the processor and the remaining part will
be implemented on the reconfigurable coprocessor.
For the portions of the applications mapped on the
reconfigurable hardware, CED, fault-location and
recovery techniques described in Sec. 2 can be used.
Multi-threading can be used to implement fault-
tolerance in the processor. Fault-tolerance is
accomplished by using multiple threads of
computations and algorithms [Saxena 00]. With the
MT-ACS architecture, recovery from permanent
faults in the processor requires board swapping or
replacement of the microprocessor chip (unless
special recovery structures using standby spares are
used). Thus, the MT-ACS architecture needs human
intervention for recovery and may not be suitable for
unmanned applications (e.g., remote space
exploration). The Dual FPGA architecture described
in Sec. 3.2 addresses this problem.

Memory

 I/O
system

Multithreaded
Processor

Reconfigurable
Coprocessor

Interface Bus

Figure 3.1. MT-ACS architecture

3.2. Dual FPGA ACS Architecture
The Dual FPGA ACS architecture is shown in

Fig. 3.2. Each FPGA in Fig. 3.2 is configured to run
certain user applications with some CED schemes.
For example, a microprocessor with various CED
features can be implemented on one of the FPGAs.
We are currently designing such a “self-healing soft
microprocessor” with built-in CED and autonomous
recovery techniques. In addition, the controller (e.g.,
an 8051 micro-controller) on each FPGA monitors
the error signal from the CED schemes implemented
on the other FPGA and performs the configuration
data recovery when necessary. Note that, the
configuration frames of both FPGAs are stored in a
safe memory space that is either replicated or
protected by Error Correcting Codes (ECCs) to
guarantee the correctness. All the CED, fault-
location and recovery techniques described in Sec. 2

can be used for the Dual FPGA architecture.

FPGA 1 FPGA 2

Controller Controller

Reconfigurable Reconfigurable

Memory

Figure 3.2. Dual FPGA ACS architecture
4. References

[Avizienis 84] Avizienis, A. and J. P. J. Kelly, “Fault
Tolerance by Design Diversity: Concepts and Experiments,”
IEEE Computer, pp. 67-80, August 1984.
[Das 99] Das, D., and N.A. Touba, “A Low-Cost Approach
for Detecting, Locating and Avoiding Interconnect Faults in
FPGA-based Reconfigurable Systems,” Intl Conf. VLSI
Design, pp. 266-269, 1999.
[Huang 00a] Huang, W.-J., and E. J. McCluskey, “Analysis
of Transient Error Effects in LZ Compression Algorithm and
Rollback Error Recovery Schemes,” Proc. Pacific Rim Intl.
Symp. Dependable Computing, 2000.
[Huang 00b] Huang, W.-J., and E. J. McCluskey, “A Memory
Coherence Technique for Online Transient Error Recovery of
FPGA Configuration,” International Symp. FPGAs, 2001.
[Huang 00c] Huang, W. J., “FPGA Fault Recovery by
Reconfiguration,” Reliability and Testability Seminar, 2000.
(http://crc.stanford.edu/projects/roar/roarPres.html)
[Mitra 98] Mitra, S., P. P. Shirvani, E.J. McCluskey, “Fault
Location in FPGA-Based Reconfigurable Systems,” High
Level Design Validation and Test Workshop, 1998.
[Mitra 99] Mitra, S., N. R. Saxena and E. J. McCluskey, “A
Design Diversity Metric and Reliability Analysis for
Redundant Systems,” Intl Test Conf., pp. 662-671, 1999.
[Mitra 00a] Mitra, S., N. R. Saxena, E. J. McCluskey,
“Common-Mode Failures in Redundant VLSI Systems: A
Survey,” IEEE Trans. Reliability, 2000.
[Mitra 00b] Mitra, S. and E. J. McCluskey, “Combinational
Logic Synthesis for Diversity in Duplex Systems,” Intl Test
Conf., pp. 179-188, 2000.
[Mitra 00c] Mitra, S. and E. J. McCluskey, “Which
Concurrent Error Detection Scheme To Choose?,” Proc.
International Test Conf., pp. 985-994, 2000.
[Mitra 00d] Mitra, S., N. Saxena, E. J. McCluskey, “Fault
Escapes in Duplex Systems,” VLSI Test Symp., pp. 453-458,
2000.
[Saxena 00] Saxena, N.R., et al., “Dependable Computing
and On-line Testing in Adaptive Computing Systems,”
Design and Test of Computers, Vol. 17, No. 1, pp. 29-41,
2000.
[Stroud 97] Stroud, C., E. Lee and M. Abramovici, “BIST-
Based Diagnostics of FPGA Logic Blocks,” Intl. Test Conf.,
pp. 539-547, 1997.
[Touba 97] Touba, N. A. and E. J. McCluskey, “Logic
Synthesis of Multilevel Circuits with Concurrent Error
Detection,” IEEE Trans. CAD, pp. 783-789, July 1997.
[Yu 00] Yu, S-Y., N. Saxena, E. J. McCluskey, “ACS
Implementation of a Robotic Controller Algorithm with Fault-
Tolerant Capabilities,” FCCM, 2000.
[Zeng 99] Zeng, C., N.R. Saxena, E.J. McCluskey, “Finite
State Machine Synthesis with Concurrent Error Detection,”
Intl Test Conf., pp. 672-679, 1999.

