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ABSTRACT

This paper presents a low-overhead schemefor built-in
self-test of  circuits with scan.   Complete (100%)  fault
coverage isobtained without modifying the function logic
and without degradingsystem performance (beyond using
scan).  Deterministic test  cubes that  detect  the random-
pattern-resistant faults are embedded in a pseudo-random
sequence of bits generated by a linear feedbackshift register
(LFSR).   This  is accomplished  by  altering  the
pseudo-random sequence byadding logic at  the LFSR's
serial  output  to  “ fix”  certain bits.   A  procedure for
synthesizing the bit-fixing logic for  embedding the test
cubes is described.  Experimental  results  indicate that
complete fault coverage can beobtained with low hardware
overhead.  Also,the proposed approach permits the use of
small  LFSR's  for  generating the  pseudo-random  bit
sequence.  The faults that arenot detected because of linear
dependencies inthe LFSR can be detected by embedding
deterministic cubes at the expense of  additional  bit-fixing
logic.  Data is presented showing how much additional
logic is required for different size LFSR's.

1.  INTRODUCTION

In built-in self-test (BIST), internal hardware is usedto
generate  test  patterns  that  are applied  to  the
circuit-under-testand to analyze the output  response.  A
low-overhead approach for BIST incircuits with scan is to
use a linear  feedback  shift  register (LFSR)  to  shift  a
pseudo-random sequence of bits into the scanchain.  When
a pattern has been shiftedinto the scan chain, it is applied
to the circuit-under-test and the response is loaded backinto
the scan chain and shifted out  into  a serial  signature
register for compaction as the next pattern is shifted into
the scan chain.  Figure 1 shows a block diagram for  this
“ test-per-scan”  BIST  scheme.  Unfortunately,  many
circuits¬contain  random-pattern-resistant (r.p.r)  faults
[Eichelberger¬83]  which limit the fault coverage that can
be achieved  with  this approach. Three methods for
improving the fault coverage for  a test-per-scan BIST
scheme are:

1. Modify Circuit-Under-Test:  The circuit-under-test
is  modif ied  by  either  inserting  test points
[Eichelberger¬83], [Cheng¬95],  [Touba¬96],  or  by
redesigning it [Touba¬94], [Chiang¬94], [Chatterjee¬95] to
improve the fault detection probabilities.These techniques
generally add extra levels of logic tothe circuit which may
degrade system performance.  Moreover, in some cases itis
not possible or not desirable to modify the function logic
(e.g., macrocells, cores, proprietary designs).

2. Weighted Pseudo-Random Sequence:  Logic  is
added¬to change the probability ofeach bit in the sequence
being a ‘1’  or a ‘0’  in a way that biases the patterns that
are generated towards those that detect the r.p.r. faults.The
weight logic can be placed either at the input of the scan
chain  [Brglez¬89b]  or  in  the  individual  scan cells
themselves  [Muradali¬90].  Multiple  weight  sets  are
usually required due to conflicting input values needed to
detect r.p.r.faults [Wunderlich¬90].  The weight sets need
to be stored and control logic isrequired to switch between
them, so the hardware overhead can be large.

3. Mixed-Mode:  Deterministic patterns are used to
detect  the faults that  the pseudo-random patterns miss.
Storing deterministic patterns in a ROM  requires a large
amount  of hardware  overhead.   Koenemann,  in
[Koenemann¬91], proposed a technique based on reseeding
an LFSR that reduces the storage requirements.  TheLFSR
that is used for generating the pseudo-random patterns is
also used togenerate deterministictest cubes (test patterns
with unspecified inputs) by  loading  it  with  computed
seeds.  The number of bits that need to be stored is reduced
by storing a set of  seeds instead of a set of  deterministic
patterns.   Hellebrand et  al., in  [Hellebrand  92],
[Venkataraman¬93],  and [Hellebrand¬95a],  proposed  an
improved technique that uses a multiple-polynomial LFSR
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for  encoding  a set  of deterministic  test  cubes.   By
“merging” and “concatenating”  the test cubes, they further
reduce thenumber of  bits that  need to be stored.  Even
further reduction can be achieved by using variable-length
seeds  [Zacharia¬95]  and  a  special  ATPG algorithm
[Hellebrand 95b].

This paper presents a new mixed-mode approach in
which  deterministic  test  cubes  are embedded  in  the
pseudo-random sequence of bits. Logic is added at  the
serial  output of  the LFSR to alter the pseudo-random bit
sequence so that it contains patterns that  detect  the r.p.r.
faults.  This is accomplished by “ fixing”  certain bits in the
sequence.   As illustrated  in  Fig.¬2, logic  is added to
generate a bit-fixing sequence that altersthe pseudo-random
sequence by causingcertain bits to be fixed to either a ‘1’
or  a ‘0’ .   A  procedure is described for  designing the
bit-fixing sequence generator in a way that reduces area
overhead.

The new test-per-scan BIST scheme presented in this
paper is sort  of  a hybrid approach.  It  is different from
weighted pattern  testing because  it  is  not  based  on
probability.  It guarantees that  certain test  cubes will  be
applied to the circuit-under-test  during a specified test
length.  Also, it doesn’ t require a multi-phase test in which
control logic is needed to switch to different weight setsfor
each phase.  The control is very simple because there is
only one phase.

The scheme presented in this paper is also different
from previous mixed-mode schemes fortest-per-scan BIST.
Previous mixed-modeschemes for test-per-scan BIST have
been basedon storing compressed data in a ROM.  In the
proposed scheme, no data is stored in a ROM, rather a
multilevel circuit is used to dynamically fix bits in a way
that  exploits bit  correlation  (same specified  values in
particular bit positions) among the test cubes for the r.p.r.
faults.   Small  numbers of  correlated bits are fixed in
selected  pseudo-random  patterns  to make  the
pseudo-randompatterns match the test  cubes.  So rather
than trying to compress the test  cubes themselves,  the
proposed scheme compresses the bit differences between
the test cubes and a selectedset of pseudo-random patterns.
Since there areso many pseudo-random patterns to choose
from, a significant amount of compression can be achieved
resulting in low overhead.

Schemes basedon reseeding an LFSR require that the
LFSR have at  least  as many  stages as the maximum
number of  bits specified in any test  cube.  A  hardware
tradeoff  that is made possible by the scheme presented in
this  paper  is  that  a smaller  LFSR  can  be used for

generating the pseudo-random bit  sequence.  This may
causesome faults to not  be detected because of  linear
dependencies in  the patterns that are  generated,  but
deterministic test cubes for those faultscan be embedded at
the expense of additional logic in the bit-fixing sequence
generator.  Data is presented showinghow much additional
logic is required for different size LFSR's.

The paper is organized as follows: In  Sec.  2,  the
architecture  of  the bit-fixing  sequence  generator  is
described.  In Sec. 3,  the procedure for  designing  the
bit-fixing sequence generator  is presented. In  Sec.  4,
experimental  results are shown for benchmark  circuits.
Sec. 5 is a conclusion.

2.  ARCHITECTURE OF BIT-FIXING
SEQUENCE GENERATOR

The purpose ofthe bit-fixing sequence generator is to
alter the pseudo-random sequence of bits that is shiftedinto
the scan chain in order to embed deterministic testcubes in
the sequence.   This is done by generating a sequence of
fix-to-1 andfix-to-0 control signals that fix certain bits to
either '1' or '0'.  The architecture of the bit-fixing sequence
generator is shown in Fig.¬3.  For a scan chain of  length
m, there is a Mod-(m+1) Counter that counts the number
of bits that have been shifted into the scan chain.  After m
bits, the scan chain is full, so when the counter reaches the
(m+1) state, the pattern in the scan chain is applied to the
circuit-under-test and the response is loadedback into the
scan chain.  At this point, the LFSR contains the starting
state for the next  pattern that  will  be shifted into the
LFSR. The Bit-Fixing Sequence Selection Logic decodes
the starting state in the LFSR and selects the bit-fixing
sequence that  will  be used for  the next  pattern. The
selected bit-fixing sequence identifier  is loaded into the
Sequence ID Register.  As the counter counts through the
next m bits that  are shifted  into the scan  chain,  the
Bit-Fixing Sequence Generation  Logic generates  the
fix-to-1 andfix-to-0 control signals basedon the bit-fixing
sequence identifier stored in the Sequence ID Register and
the value of the counter (see Fig. 6 for a specific example).

One thing that  should be pointed out  is that  the
Mod-(m+1) Counter is not  additional  overhead.  It  is
needed in the control  logic for  any  test-per-scan BIST
technique to generate  a  control  signal  to  clock  the
circuit-under-test when the scan chain is full. Thus,  this
scheme takes advantage of existing BIST control logic.

For each pattern that is shifted into the scan chain, the
bit-fixing sequence generator is capable of generating one
of 2n different bit-fixing sequences wheren is the size of
theSequence ID Register.  A deterministic test cube for an
r.p.r. fault can be shifted into the scan chain by generating
an appropriate bit-fixing sequence for a pseudo-random
pattern generated by the LFSR.  The bit-fixing sequence
fixes certain bits in the pseudo-random pattern such that
the resulting pattern that  is shifted into the scan chain
detects the r.p.r. fault.  The bit-fixing sequence generator
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Figure 3 .  Architecture of Bit-Fixing Sequence Generator

must be designed sothat it generates enough deterministic
test cubes to satisfy the fault coverage requirement.  The
key to minimizing the area overhead for this approach is
careful  selection of the bit-fixing  sequences that  are
generated.

Onecharacteristic of  the test cubes for r.p.r. faults is
thatsubsets of  them often have the same specified values
in particular bit positions (this will  be referred to as "bit
correlation").  For example, the test cubes 11011, 11X00,
and 1X0X0, are correlated in the 1st,  2nd,  and 3rd bit
positions, but not in the 4th and 5th.  That is because all
of  the specified bits in the 1st  and 2nd bit  positions are
1's, and all of the specified bits in the 3rd bit position are
0's.  However, the 4th and 5th bit positions have conflicts
becausesome of the specified values are 1's and some are
0's.  Note that the unspecified values (X's) don't matter.
The reason why a significant amount of  bit  correlation
often exists among the test  cubes for  the r.p.r.  faults is
probably due to the fact that several  r.p.r. faults may be
caused by a single random patternresistant structure in the
circuit.  For example, if  there is a large fan-in AND gate
in a circuit, then that may cause all of the input stuck-at 1
faults and the output stuck-at 0 fault of the gate to be r.p.r.
Many of the specified values in particular bit positions of
the test  cubes for these r.p.r.  faults will  be the same.
Thus, there will be a significant amount of  bit correlation
among the test  cubes.   This phenomenon  is seen  in
weighted pattern testing where biasing certain bitpositions
results in detecting a significant number of r.p.r. faults.

In the scheme presented in this paper, bit correlation
among the test  cubes for  the r.p.r.  faults  is  used  to
minimize both the number of differentbit-fixing sequences
that are required and the amount of decoding logic.   A
procedure for designing the bit-fixingsequence generator is
described in the next section.

3.  DESIGNING BIT-FIXING  SEQUENCE
GENERATOR

For a given LFSR and circuit-under-test, this section
describes an automatedprocedure for designing a bit-fixing
sequence generator tosatisfy test length and fault coverage

requirements.  The bit-fixing sequence generator isdesigned
to alter the pseudo-random bit sequence generated by the
LFSR to achieve the desired fault coverage for the given
test  length  (number of  scan  patterns  applied  to  the
circuit-under-test).

3 . 1 Obtaining Test Cubes
The first step is to simulate the r-stage LFSR for the

given test length L  to determine the set of pseudo-random
patterns that are applied tothe circuit-under-test.  For each
of theL patterns that are generated, the starting r-bit state
of  the LFSR is recorded (i.e., the contents of  the LFSR
right before shifting the first  bit  of  the pattern into the
scan chain).  Fault  simulation is then performed on the
circuit-under-test for the pseudo-random patterns to  see
which faults are detected and which are not.  The pattern
that drops each fault from the fault  list  (i.e., detects the
fault for the first time) is recorded. The faults that are not
detected  are the  faults  that  require  altering  of
pseudo-random bit  sequence. The pseudo-random bit
sequencemust be altered to generate test cubes that detect
the undetected faults.  An automatictest pattern generation
(ATPG) tool is used to obtain test cubes for the undetected
faults by leaving unspecified inputs asX’s.

A  simple contrived design example will  be used to
illustrate the procedure described  in  this  paper.   A
bit-fixing sequencegenerator will  be designed to provide
100% fault  coverage for  a test  length  of  12  patterns
(L¬=¬12) generated by a 5-stage LFSR (r¬= 5) andshifted into
a 12 bit scan chain (m=12).   Figure 4  shows the 12
patterns that are generated bythe LFSR and applied to the
circuit-under-test through the scan chain.  Foreach pattern,
the starting state of the LFSR is shown and the number of
faults that are dropped from thefault list is shown.   Five
of the patterns drop faults while the other 7 do not.  The
pseudo-random patterns detect 16out of  20 possible faults
giving a fault coverage of 80%.  An ATPG tool  is used to
obtain  test  cubes for  the 4  undetected  faults.   The
bit-fixing sequence generator must be designed so that it
alters the pseudo-random bit sequence in a way that all  4
test cubes are generated in the scan chain.
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Starting State Pattern Shifted into Scan Chain Num. of Faults Dropped

0  1  0  1  1 → 0 1 0 0 0 0 1 0 1 0 1 1 7
1  1  0  1  0 → 1 1 1 1 1 0 0 1 1 0 1 0 5
1  1  0  0  0 → 0 1 0 1 1 1 0 1 1 0 0 0 2
0  0  0  0  1 → 1 1 0 1 0 0 1 0 0 0 0 1 0
1  1  1  0  0 → 1 1 0 0 0 1 1 1 1 1 0 0 1
0  1  1  1  0 → 0 0 0 0 1 0 1 0 1 1 1 0 0
0  1  0  0  1 → 1 1 1 0 0 1 1 0 1 0 0 1 0
0  0  0  1  1 → 0 1 1 1 0 1 1 0 0 0 1 1 0
0  0  1  0  1 → 0 1 0 0 1 0 0 0 0 1 0 1 0
1  0  0  1  1 → 0 0 0 1 1 1 1 1 0 0 1 1 1
1  1  0  1  1 → 0 0 1 0 1 0 1 1 1 0 1 1 0
0  0  1  0  0 → 1 0 0 1 1 0 1 0 0 1 0 0       0     

16/20
Fault Coverage = 80%

Test Cubes for Undetected Faults:1 1 1 X 0 0 X X X X 0 0
1 0 1 X 1 0 X X X X 0 X
0 0 0 X X 1 X X X X 0 0
0 1 X X 0 1 X X X X 1 0

Figure 4 .  Design Example (r =5, L=12,m=12):  Obtaining the Test Cubes

Starting LFSR states for Patterns that Drop Faults:  01011, 11010, 11000, 11100, 10011

F ′  = (01011 + 11010 + 11000 + 11100 + 10011) ′

Largest Implicant inF ′ :  00XXX

Starting LFSR State Corresponding Scan Pattern

Patterns Decoded by 00XXX: 0  0  0  0  1 → 1 1 0 1 0 0 1 0 0 0 0 1
0  0  0  1  1 → 0 1 1 1 0 1 1 0 0 0 1 1
0  0  1  0  1 → 0 1 0 0 1 0 0 0 0 1 0 1
0  0  1  0  0 → 1 0 0 1 1 0 1 0 0 1 0 0

Consider all 4 Test Cubes Eliminate One Test Cube

1 1 1 X 0 0 X X X X 0 0 Test Cubes 1 1 1 X 0 0 X X X X 0 0
1 0 1 X 1 0 X X X X 0 X 1 0 1 X 1 0 X X X X 0 X
0 0 0 X X 1 X X X X 0 0
0     1    X    X    0     1    X    X    X    X    1     0 0    1    X    X    0     1    X    X    X    X    1    0

0 Bits to Fix 1 0
↓ ↓ ↓

1 1 0 1 0 0 1 0 0 0 0 0 Resulting 1 1 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 1 0  Scan Patterns 0 1 1 1 0 1 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0

1 Test Cube Embedded 3 Test Cubes Embedded

Figure 5 .  Design Example:  Finding Decoding Function and Set of Bits to Fix for the New Sequence ID Register Bit



3 . 2 Embedding Test Cubes
Once the set of test cubes forthe undetected faults has

been obtained, the bit-fixing sequence generator  is then
designed to embed thetest cubes in the pseudo-random bit
sequence.  The test  cubes are embedded in a way  that
guarantees that faults that  are currently  detected by  the
pseudo-random bit sequence will remain detected after the
test cubes are embedded.  This is done by only altering
patterns that don’ t drop any faults.  As long as the patterns
that  drop faults are not  altered, the dropped faults are
guaranteedto remain detected.   This ensures that  fault
coverage willnot be lost in the process of  embedding the
test cubes.

The  goal  in  designing the  bit-fixing  sequence
generator  is to embed the test  cubes with  a  minimal
amount of  hardware.  A hill-climbing strategy is used in
which one bit  at  a time is added to the Sequence ID
Register basedon maximizing the number  of  test  cubes
that are embedded eachtime.  Bits continue to be added to
theSequence IDRegister until  a sufficient number of  test
cubes have been embedded to satisfy  the fault  coverage
requirement. Complete fault coverage can be obtained by
embedding test cubes for all of the undetected faults.

For each bit that is added to theSequence ID Register,
the first step is to determine for which patterns the bit  will
be active (i.e., which patterns it will alter).  In order not to
reduce the fault coverage, it is important to choosea set of
patterns that don’ t  currently  drop  any  faults  in  the
circuit-under-test. In order  to minimize the Bit-Fixing
SequenceSelection Logic, it is important to choose a set
of patterns that are easy todecode.  The set of patterns for
which the newSequence IDRegister bit will  be active are
decoded from the starting state of  the LFSR for  each
pattern.  Let F  be a Boolean function equal  to the sum of
the minterms corresponding to the starting state for each
pattern  that  drops faults.   Then  an  implicant  in F ′
corresponds to a set of patterns that don’ t drop faults and
can be decoded by an n-input AND gate where n is the
number  of  literals in the implicant.  A  binate covering
procedure can be used to choose the largest implicantin F ′
(see[Touba 95]).  The largest implicant requires the least
logic to decode and corresponds to  the largest  set  of
pseudo-random patterns that don’tdrop any faults and thus
is most desirable.  These are the patterns that will  activate,
and hence be altered by, the newSequence ID Register bit.

In the design example,  there are 5 starting LFSR
states that  correspond to the patterns that drop faults.
They are listed at the top of  Fig. 5.  The function F  is
formed, and thelargest implicant in the complement of F
is found.  The largest implicant is 00XXX.  Whenever the
first two bits in a starting state of  the LFSR are both ‘0’ ,
then the newSequence ID Register bit is activated.  Thus,
there are 4  patterns for  which  the new Sequence ID
Register bit will be activated.

After the set of patterns that activate the newSequence
ID Register bit have been determined, the next step is to
determine which bits in the patterns will be fixedwhen the

newSequence ID Register bit is activated.  The goal  is to
fix the bits in a way that embeds as many test  cubes as
possible.  The strategy is to find some good candidate sets
of  bits to fix  and then compute how  many  test  cubes
would be embedded if each were used.  The candidate that
embeds the largest number of test cubes is then selected.

The candidate sets of  bits to fix  are determined by
looking at  bit  correlation among the test  cubes.   For
example, if the two test cubes 1010X and00X11 are to be
embedded, then fixing the 2nd bit position to a ‘0’ , the 3rd
bit  position to a ‘1’ ,  and the 5th bit  position to a ‘1’
would help to embed both test cubesin the pseudo-random
bit sequence.  But, fixing the 1st bit to a ‘1’  or fixing the
4th bit to a ‘0’ would only help to embed the first  test
cube; it  would prevent the second test cube from being
embedded.  The reason for this is that the two test cubes
have conflicting values in the 1st and 4th bit.  So given a
set of test cubes to embed, the best bits to fix are the ones
in which there are no conflicting values among the test
cubes.  The procedure for selecting theset of  bits to fix is
as follows (the procedure is illustrated  for  the design
example at the bottom of Fig. 5):

1. Place all test cubes to be embedded into the initial set of
test cubes.

Begin by considering all of thetest cubes that need to
be embedded.

[In the design example in Fig.  5,  all  4 test
cubes are considered initially.]

2. Identify  bits where there are no  conflicting  values
among the test cubes.

Look at each bit position.  If  one or more test cubes
has a ‘1’  and one or more test cubes has a ‘0’ in the bit
position then there is a conflict.  If  all of  the test  cubes
have either a ‘1’ (‘0’) or an ‘X’, then the bit can be fixedto
a ‘1’ (‘0’).

[In the designexample in Fig. 5, when all  4
test  cubes  are  considered,  only  the  last bit
position has no conflicting values.  All  4 of the
test cubes have either a ‘0’  or an ‘X’ in the last
bit  position.]

3. Compute the number  of  test  cubes that  would  be
embedded by fixing this candidate set of bits.

For each pattern that activates the new Sequence ID
Register bit,  fix  the set  of  bits that was determined in
step¬2.  Count the number of  test cubes that are embedded
in the resulting patterns.

[In the design example in Fig.  5,  when the
last  bit  position is fixed to a ‘0’  in the 4 scan
patterns  that  activate the  new  Sequence  ID
Register  bit,  it enables  the  test  cube
01XX01XXXX10 to  be  embedded  in the
pseudo-random pattern011101100011.]
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4. If the number of test cubes embedded is larger than that
of the best candidate, then mark this as the best candidate.

The goal is choosing the set of bits to fix is to embed
as many test cubes as possible.

5. Remove the test  cube that  will  eliminate the most
conflicts.

One test cube is removed from consideration in order
to increasethe number of  bits that can be fixed.  The test
cube that  is removed is chosen based on reducing the
number  of  conflicting bits in the remaining set  of  test
cubes.

[In the designexample in Fig. 5, if  the third
test cube is eliminated from consideration,  the
remaining 3 test  cubes have two specified bit
positionswhere there are no conflicts.  The third
bit can be fixed to a ‘1’  in addition to fixing the
last bit to a ‘0’ .]

6. If  the number of  test cubes that are embedded by the
best candidate is greater than the number of  test cubes that
remain, then select  the best candidate.  Otherwise, loop
back to step 2.

The next candidate set ofbits to fix will  only help to
embed the remaining set of  test cubes, and therefore has
limited  potential.   If  it is  not  possible  for  the next
candidate to embed more test cubes thanthe best candidate,
then the best candidate is selected as the set of bits to fix.

7. Eliminate  as  many  fixed  bits  as possible without
reducing the number of embedded test cubes.

In order to minimize hardware area, it is desirable to
fix as few bits as possible.  It may be possible to embed
the test cubes without fixing all of  the bits in the selected
set.  An attempt is made to reduce the number of fixed bits
by eliminating one bit at a time and checking to see if  the
same test cubes are embedded.

The bit-fixing sequence generatoris designed so that
when the newSequence ID Register bit is activated, the set
of  bits selected by  the procedure above is fixed.   The
pseudo-randompatterns that are altered to embed each test
cube are added to the set of patterns that drop faults (one
pattern per embedded testcube).  This is done to ensure
that those patterns are not further altered such that they
would no longer  embed the test  cubes.   If  the fault
coverage is not sufficient after adding thenew Sequence ID
Register bit, then another Sequence ID Register bit  is
added to embed more test cubes.

In the design example in Fig. 5, when all 4 test cubes
are considered, the only specified bit position where there
are no conflicts is the last bit position which can be fixed
to a ‘0’ .   Fixing this bit enables one test  cube to be
embedded.  However, when  one of  the test  cubes is
eliminated from consideration then the remaining 3  test
cubes have two specified bit positions where there are no
conflicts. Fixing these two bits enables all  3  of  the

remaining test cubes to be embedded.  Thus, this is the
selected set of  bits to  fix  when the new Sequence ID
Register bit is activated.  There is still  one test cube that
hasnot been embedded.  Since complete fault coverage is
required, another bit must be added to  the Sequence ID
Register.  The three pseudo-random patterns in which the
three test cubes were embedded are added to the set of
patterns that drop faults, and the procedure for adding anew
Sequence ID Register bit is repeated.

3 . 3 Synthesizing Bit-Fixing  Sequence
Generation Logic

When enough bits have been added tothe Sequence ID
Register to provide sufficient fault coverage,the remaining
task is to synthesize the Bit-Fixing Sequence Generation
Logic.   The Bit-Fixing  Sequence  Generation  Logic
generates thefix-to-1 andfix-to-0 control signals to fix the
appropriate bits in  the sequence depending on  which
Sequence ID Register bits are active. For each Sequence
ID Register bit that is active, control signals are generated
when certain states of the counter are decoded.

The processof  constructing the Bit-Fixing Sequence
Generation Logic is best explained with an example.  The
Bit-Fixing Sequence Generation Logic for  the  design
example is shown in Fig.¬6.  The first bit in the Sequence
ID Register is activated whenever the first two bits in the
starting seed for a pattern are both ‘0’ .  This condition is
decoded using a two-input AND  gate and loading  the
Sequence ID Register right before shifting a new pattern
into the scan chain.  When the first bit in the Sequence ID
Register is active, it fixes the 1st bit shifted into the scan
chain to a ‘0’  and the 10th bit shifted into the scan chain to
a ‘1’ .  This is done by generating a fix-to-0 signal  when
the counter is in the “cnt-1”  state and a fix-to-1 signal
when the counter is in “cnt-10”  state.  The second bit  in
theSequence ID Register is activated whenever the 3rd and
4th bit in the starting seed for a pattern are both ‘1’ . When
thesecond bit in the Sequence ID Register is activated, it
fixes the 2nd bit shifted into the scan chain to a ‘0’ .  This
is done by generating afix-to-0 signal  when the counter is
in “cnt-2” state.



Table 1 .  Results for 100% Fault Coverage for a Test Length of 10,000 Pseudo-Random Patterns

Circuit Reseeding
[Hellebrand 95b]

Bit-Fixing Sequence Generator

Scan Max. Num LFSR ROM LFSR Seq ID Literal
Name Size Specified Bits Size Bits Size Reg Size Count

s420 34 20 20 250 20
14
10

1
3
4

27
70
70

s641 54 22 22 183 22
14
9

2
4
6

63
87

109
s838 66 36 36 1623 36

14
12

5
7
7

168
176
199

s1196 32 17 17 267 17
14
12

4
4
8

67
71

102
s5378 214 19 27 726 19

14
12

3
4
9

163
174
367

C2670 233 48 60 3412 48
16
10

4
5
12

328
334
427

C7552 207 100 100 5241 100
36
17

7
8
13

741
782
828

When  constructing  the Bit-Fixing Sequence
Generation Logic, the states of the counter can be decoded
by simply using n-input AND gates where n is equal  to
the number  of  bits in the counter.  However, once the
logic has been constructed, it should beminimized using a
multilevel logic  optimization  tool.   The  don’ t  care
conditions due to the unused states of  the counter can be
used to minimize the logic, but  more importantly,  the
logic can be factored.  Because the number ofinputs to the
logic is small, factoring is very effective for significantly
minimizing the Bit-Fixing Sequence Generation Logic.

Since the Bit-Fixing Sequence Generation Logic is
synthesized from a two-level starting point, it can be made
prime and irredundant usingsynthesis procedures such as
those described in [Bostick 87] and [Rajski 92]. If  the full
don't  care set  is used (i.e., all  input  combinations that
don't occur during BIST aredon't cares), then the resulting
logic will be 100% tested for single stuck-at faults by the
patterns applied during BIST [Bartlett 88].

4.  EXPERIMENTAL RESULTS

The procedure described  in  this paper has  been
implemented in Stanford CRC’s synthesis-for-test tool,
TOPS,  and  was  used to  design  bit-fixing  sequence
generators for  ISCAS 85  [Brglez¬85]  and  ISCAS 89
[Brglez¬89a] benchmark  ci rcui ts  that  contain
random-pattern-resistant faults.The primary  inputs and

flip-flops in each circuit were configured in a scan chain.
The bit-fixing sequence generators were designedto provide
100% fault coverageof all  detectable single stuck-at faults
for a test length of 10,000 patterns.

The results are shown in Table 1.  The size of  the
scan chain is shown for  each circuit followed by  the
maximum number of  specified  bits in  any  test  cube
contained in the test set reported in [Hellebrand 95b].  If
the characteristic polynomial of theLFSR is primitive (as
is the case in these results) and the number of stages in the
LFSR is greater than or equal  to the number of specified
bits in a test cube for a fault, then the LFSR is guaranteed
to be capable of generating patterns that detect the fault. If
the number of stages in the LFSR is less than the number
of specified bits in a test cube for some fault, then it may
not be possible for  the LFSR to generate a pattern that
detects the fault due to linear dependencies in the LFSR.
Results are shown for the bit-fixing sequence generator
required for different size LFSR's.  For each different size
LFSR, the number of  bits in the Sequence ID Register is
shown along with the factored form literal  count for the
multilevel  logic  required  to implement  the  bit-fixing
sequence generator.  For each circuit, results were shown
for  an  LFSR with  as many  stages as the maximum
number of specified bits. These LFSR's are guaranteed to
be capable of generating patterns to detectall  of  the faults.
For the smaller LFSR's, there are some faults that are not
detected because of linear dependencies in the LFSR.Extra
test cubes must be embedded inorder to detect those faults



thereby resulting in an increase in the area ofthe bit-fixing
sequence generator.  Ascan be seen, in some cases adding
just  a small  amount  of  logic to the bit-fixing sequence
generator permits the use of  a  much  smaller  LFSR.
Consider C2670,  using a 16-stage LFSR instead of a
48-stageLFSR  only  requires an  additional  6  literals.
However, in some cases there is a large increase in the
amount  of logic  required  for  using  a smaller  LFSR.
Consider s5378,  using a 12-stage LFSR  instead  of  a
14-stage LFSR increases the amount  of  logic  in  the
bit-fixing sequence generator by more than a factor of two.

Results  for  the  reseeding method  presented  in
[Hellebrand 95b]  are shown in Table 1 for  comparison.
The size of  the LFSR and the number of  bits stored in a
ROM are shown. Note that the reseeding method requires
that  the LFSR have at  least  as many  stages as the
maximum number of specified bits in any test cube.  It is
difficult to directly comparethe two methods because they
are implemented differently (ROM versusmultilevel  logic)
and requirevery  different  control  logic.   The reseeding
method  requires that  the LFSR  have  programmable
feedback logic and parallel  load  capability  as well  as
additional control  logic for  loading the seeds from the
ROM.

5.  CONCLUSIONS

There are three new  and  important  features  that
distinguish the mixed-mode scheme presentedin this paper
from other mixed-mode schemes for test-per-scan BIST.
The first is that test cubes for the random-pattern-resistant
faults are embeddedin the pseudo-random bit  sequence.
Since there are so many possible pseudo-random patterns
in which to embed each test cube, the bit-fixing required to
embed a set of  test cubes can be correlated in certain bit
positions to minimize hardware.  The second feature isthat
a one-phase test is  used.   Having  only  one  phase
simplifies the BIST control logic.  The third feature is that
smallerLFSR’s can be used.  There is a tradeoff between
the size of  the LFSR and the amount of  bit-fixing logic,
so the LFSR size can be chosen to minimize the overall
area.  These three features make the scheme presented in
this paper an attractive option for  BIST in circuits with
scan.

One way to achieve aneven greater overhead reduction
may be to combine the bit-fixing technique described in
this paper with reseeding techniques.  By  reseeding the
LFSR with just a few selected seeds to generate some of
the least correlated test cubes that require alot of  bit-fixing
to embed, it may be possible to significantly reduce the
complexity of the bit-fixing sequence generator.  This idea
is currently being investigated.

Another  way to reduce the overhead would  be to
develop a special ATPGprocedure that finds test cubes for
each r.p.r. fault in a way that maximizes the bit correlation
among the test cubes.  This would reduce the amount of
bit-fixing that is required to embed the test cubes.  The

results in [Hellebrand 95b]  indicate that  modifying the
ATPG procedure can make significant difference.This idea
is also being investigated.

Note that while the experimental results presented in
this paper were for single stuck-at faults, the approach of
embedding deterministic test  cubes in a pseudo-random
sequence works for  other  fault  models (e.g.,  multiple
stuck-at faults and bridging faults) as well.
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