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ABSTRACT

This paper presents a low-overhead schiméuilt-in
self-test of circuits with scan. Complete (100%) fault
coverage i®btained without modifying the function logic
and without degradingystem performance (beyond using
scan). Deterministic test cubes that detect the random-
pattern-resistant faults are embedded in a pseudo-random
sequence of bits generated by a linear feeddaitkregister
(LFSR). This is accomplished by adtering the
pseudo-random sequence byding logic at the LFSR's
serial output to “fix” certain bits. A procedure for
synthesizing the bit-fixing logic for embedding the test
cubes is described. Experimental results indicate that
complete fault coverage can bietained with low hardware
overhead. Alsothe proposed approach permits the use of
smal LFSR's for generating the pseudo-random bit
sequence. The faults that au@t detected because of linear
dependencies ithe LFSR can be detected by embedding
deterministic cubes at the expense of additional bit-fixing
logic. Data is presented showing how much additional
logic is required for different size LFSR's.

1. INTRODUCTION

In built-in self-test (BIST), internal hardware is uged
generate test patterns that are applied to the
circuit-under-testand to analyze the output response. A
low-overhead approach for BIST d@ircuits with scan is to
use a linear feedback shift register (LFSR) to shift a
pseudo-random sequence of bits into the sbham. When
a pattern has been shiftedo the scan chain, it is applied
to the circuit-under-test and the response is loadedibtxk
the scan chain and shifted out into a serid signature
register for compaction as the next pattern is shifted into
the scan chain. Figure 1 shows a block diagram for this
“test-per-scan” BIST scheme.  Unfortunately, many
circuitscontain random-pattern-resistant  (r.p.r) faults
[Eichelberge83] which limit the fault coverage that can
be achieved with this approach. Three methods for
improving the fault coverage for a test-per-scan BIST
scheme are:

1. Modify Circuit-Under-Test: The circuit-under-test
is modified by either inserting test points
[EichelbergeB3], [Cheng95], [Touba96], or by
redesigning it [Touba 94], [Chiang 94], [Chatterjee 95] to
improve the fault detection probabilitie3.hese techniques
generally add extra levels of logic tiwe circuit which may
degrade system performance. Moreover, in some cases it
not possible or not desirable to modify the function logic
(e.g., macrocells, cores, proprietary designs).

2. Weighted Pseudo-Random Sequence:  Logic is
addedo change the probability @&ch bit in the sequence
being a‘l or a‘'0 in away that biases the patterns that
are generated towards those that detect the r.p.r. fatits.
weight logic can be placed either at the input of the scan
chain [Brglez89b] or in the individua scan cells
themselves [Muradali 90]. Multiple weight sets are
usually required due to conflicting input values needed to
detect r.p.rfaults [Wunderlich 90]. The weight sets need
to be stored and control logicriequired to switch between
them, so the hardware overhead can be large.

3. Mixed-Mode: Deterministic patterns are used to
detect the faults that the pseudo-random patterns miss.
Storing deterministic patterns in a ROM requires a large
amount of hardware overhead. Koenemann, in
[KoenemanrB1], proposed a technique based on reseeding
an LFSR that reduces the storage requirements LFB&
that is used for generating the pseudo-random patterns is
also used tgenerate deterministitest cubes (test patterns
with unspecified inputs) by loading it with computed
seeds. The number of bits that need to be stored is reduced
by storing a set of seeds instead of a set of deterministic
patterns.  Hellebrand et al., in [Hellebrand 92],
[Venkatarama®3], and [Hellebrand95a], proposed an
improved technique that uses a multiple-polynomial LFSR
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for encoding a set of deterministic test cubes. By
“merging” and “ concatenating” the test cubes, they further
reduce thenumber of bits that need to be stored. Even
further reduction can be achieved by using variable-length
seeds [Zacharia95] and a speciad ATPG algorithm
[Hellebrand 95b].

This paper presents a hew mixed-mode approach in
which deterministic test cubes are embedded in the
pseudo-random sequence of bits. Logic is added at the
serial output of the LFSR to ater the pseudo-random bit
seguence so that it contains patterns that detect the r.p.r.
faults. Thisisaccomplished by “fixing” certain bitsin the
sequence.  As illustrated in Fig. 2, logic is added to

generate a bit-fixing sequence that altbespseudo-random

sequence by causimmgrtain bits to be fixed to either a ‘1’
or a ‘0. A procedure is described for designing the
bit-fixing sequence generator in a way that reduces area
overhead.

The new test-per-scan BIST scheme presented in this
paper is sort of a hybrid approach. It is different from
weighted pattern testing because it is not based on
probability. It guarantees that certain test cubes will be
applied to the circuit-under-test during a specified test
length. Also, it doesn’'t require a multi-phase test in which
control logic is needed to switch to different weight $ets
each phase. The control is very simple because there is
only one phase.

The scheme presented in this paper is also different

from previous mixed-mode schemes test-per-scan BIST.

Previous mixed-modschemes for test-per-scan BIST have
been basedn storing compressed data in a ROM. In the
proposed scheme, no data is stored in a ROM, rather a
multilevel circuit is used to dynamically fix bits in a way
that exploits bit correlation (same specified values in
particular bit positions) among the test cubes for the r.p.r.
faults. Small numbers of correlated bits are fixed in
selected pseudo-random patterns to  make the
pseudo-randonpatterns match the test cubes. So rather
than trying to compress the test cubes themselves, the
proposed scheme compresses the bit differences between
the test cubes and a selecsetiof pseudo-random patterns.
Since there arso many pseudo-random patterns to choose

from, a significant amount of compression can be achieved

resulting in low overhead.

Schemes basamh reseeding an LFSR require that the
LFSR have at least as many stages as the maximum
number of bits specified in any test cube. A hardware
tradeoff that is made possible by the scheme presented in
this paper is that a smaler LFSR can be used for

generating the pseudo-random bit sequence. This may
causesome faults to not be detected because of linear
dependencies in the patterns that are generated, but
deterministic test cubes for those faués be embedded at
the expense of additional logic in the bit-fixing sequence
generator. Data is presented showiog much additional
logic is required for different size LFSR's.

The paper is organized as follows: In Sec. 2, the
architecture of the hit-fixing sequence generator is
described. In Sec. 3, the procedure for designing the
bit-fixing sequence generator is presented. In Sec. 4,
experimental results are shown for benchmark circuits.
Sec. 5 isaconclusion.

2. ARCHITECTURE OF BIT-FIXING
SEQUENCE GENERATOR

The purpose ofhe bit-fixing sequence generator is to
alter the pseudo-random sequence of bits that is shhifted
the scan chain in order to embed deterministicagsss in
the sequence. This is done by generating a sequence of
fix-to-1 andfix-to-0 control signals that fix certain bits to
either '1' or '0". The architecture of the bit-fixing sequence
generator isshown in Fig. 3. For a scan chain of length
m, there is a Mod-(m+1) Countetthat counts the number
of bits that have been shifted into the scan chain. After m
bits, the scan chain is full, so when the counter reaches the
(m+1) state, the pattern in the scan chain is applied to the
circuit-under-test and the response is loabatk into the
scan chain. At this point, the LFSR contains the starting
state for the next pattern that will be shifted into the
LFSR. The Bit-Fixing Sequence Selection Logic decodes
the starting state in the LFSR and selects the bit-fixing
sequence that will be used for the next pattern. The
selected bit-fixing sequence identifier is loaded into the
Sequence ID RegisterAs the counter counts through the
next m bits that are shifted into the scan chain, the
Bit-Fixing Sequence Generation Logic generates the
fix-to-1 andfix-to-0 control signals basesh the bit-fixing
sequence identifier stored in the Sequence ID Register and
the value of the counter (see Fig. 6 for a specific example).

One thing that should be pointed out is that the
Mod-(m+1) Counter is not additional overhead. It is
needed in the control logic for any test-per-scan BIST
technique to generate a control signal to clock the
circuit-under-test when the scan chain is full. Thus, this
scheme takes advantage of existing BIST control logic.

For each pattern that is shifted into the scan chain, the
bit-fixing sequence generator is capable of generating one
of 2" different bit-fixing sequences whereis the size of
the Sequence ID RegisteA deterministic test cube for an
r.p.r. fault can be shifted into the scan chain by generating
an appropriate bit-fixing sequence for a pseudo-random
pattern generated by the LFSR. The bit-fixing sequence
fixes certain bits in the pseudo-random pattern such that
the resulting pattern that is shifted into the scan chain
detects the r.p.r. fault. The bit-fixing sequence generator
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Figure 3. Architecture of Bit-Fixing Sequence Generator

must be designed gbat it generates enough deterministic
test cubes to satisfy the fault coverage requirement. The
key to minimizing the area overhead for this approach is
careful selection of the bit-fixing sequences that are
generated.

One characteristic of the test cubes for r.p.r. faults is
that subsets of them often have the same specified values
in particular bit positions (this will be referred to as "bit
correlation"). For example, the test cubes 11011, 11X00,
and 1X0XO, are correlated in the 1st, 2nd, and 3rd bit
positions, but not in the 4th and 5th. That is because al
of the specified bits in the 1st and 2nd bit positions are
1's, and all of the specified bits in the 3rd bit position are
0's. However, the 4th and 5th hit positions have conflicts
becausesome of the specified values are 1's and some are
0's. Note that the unspecified values (X's) don't matter.
The reason why a significant amount of bit correlation
often exists among the test cubes for the r.p.r. faults is
probably due to the fact that several r.p.r. faults may be
caused by a single random pattegsistant structure in the
circuit. For example, if there is a large fan-in AND gate
in acircuit, then that may cause al of the input stuck-at 1
faults and the output stuck-at O fault of the gate to be r.p.r.
Many of the specified values in particular bit positions of
the test cubes for these r.p.r. faults will be the same.
Thus, there will be a significant amount of bit correlation
among the test cubes. This phenomenon is seen in
weighted pattern testing where biasing certaipbgitions
results in detecting a significant number of r.p.r. faults.

In the scheme presented in this paper, bit correlation
among the test cubes for the r.p.r. faults is used to
minimize both the number of differehit-fixing sequences
that are required and the amount of decoding logic. A

procedure for designing the bit-fixirggquence generator is

described in the next section.

3. DESIGNING BIT-FIXING SEQUENCE
GENERATOR

For a given LFSR and circuit-under-test, this section
describes an automatetbcedure for designing a bit-fixing
sequence generator $disfy test length and fault coverage

requirements. The bit-fixing sequence generatdesigned
to alter the pseudo-random bit sequence generated by the

LFSR to achieve the desired fault coverage for the given

test length (number of scan patterns applied to the

circuit-under-test).

3.1 Obtaining TestCubes

The first step isto simulate the r-stage LFSR for the
given test length L to determine the set of pseudo-random
patterns that are applied tfwe circuit-under-test. For each
of theL patterns that are generated, the starting r-bit state
of the LFSR is recorded (i.e., the contents of the LFSR
right before shifting the first bit of the pattern into the
scan chain). Fault simulation is then performed on the
circuit-under-test for the pseudo-random patterns to see
which faults are detected and which are not. The pattern
that dropseach fault from the fault list (i.e., detects the
fault for the first time) is recordedThe faults that are not
detected are the faults that require altering of
pseudo-random bit sequence. The pseudo-random bit
sequencenust be altered to generate test cubes that detect
the undetected faults. An automatst pattern generation
(ATPG) tool is used to obtain test cubes for the undetected
faults by leaving unspecified inputs 4.

A simple contrived design example will be used to
illustrate the procedure described in this paper. A
bit-fixing sequencegenerator will be designed to provide
100% fault coverage for a test length of 12 patterns
(L=12) generated by a 5-stage LFSRY) andshifted into
a 12 hit scan chain (m=12). Figure 4 shows the 12
patterns that are generatedtbg LFSR and applied to the
circuit-under-test through the scan chain. &ach pattern,
the starting state of the LFSR is shown and the number of
faults that are dropped from tiault list is shown. Five
of the patterns drop faults while the other 7 do not. The
pseudo-random patterns detectdl of 20 possible faults
giving afault coverage of 80%. An ATPG tool is used to
obtain test cubes for the 4 undetected faults. The
bit-fixing sequence generator must be designed so that it
aters the pseudo-random bit sequence in away that all 4
test cubes are generated in the scan chain.
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Figure 4. Design Example (r=5,L=12,m=12): Obtaining the Test Cubes

Starting LFSR states for Patterns that Drop Faults: 01011, 11010, 11000, 11100, 10011
F' = (01011 + 11010 + 11000 + 11100 + 10011)’

Largest Implicant irF": 00XXX

Starting LFSR State Corresponding Scan Pattern

Patterns Decoded by 00OXXX: 00 00 1 - 1101001000012
00011 - 011101100011

00101 - 010010000101

00100 . 100110100100

Consider al 4 Test Cubes Eliminate One Test Cube
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101X10XXXXO0X 101 X10XXXXO0X
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0 Bits to Fix 1 0
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110100100000 Resulting 111100100000
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Figure 5. Design Example: Finding Decoding Function and Set of Bitsto Fix for the New Sequence ID Regist&it



3.2 Embedding TestCubes

Once the set of test cubes fbe undetected faults has
been obtained, the bit-fixing sequence generator is then
designed to embed thest cubes in the pseudo-random bit
sequence. The test cubes are embedded in a way that
guarantees that faults that are currently detected by the
pseudo-random bit sequence will remain detected after the
test cubes are embedded. This is done by only altering
patterns that don’t drop any faults. Aslong as the patterns
that drop faults are not atered, the dropped faults are
guaranteedo remain detected. This ensures that fault
coverage willnot be lost in the process of embedding the
test cubes.

The goa in designing the bit-fixing sequence
generator is to embed the test cubes with a minimal
amount of hardware. A hill-climbing strategy is used in
which one bit at a time is added to the Sequence ID
Registerbasedon maximizing the number of test cubes
that are embedded eattine. Bits continue to be added to
the Sequence IRegisteruntil a sufficient number of test
cubes have been embedded to satisfy the fault coverage
requirement. Complete fault coverage can be obtained by
embedding test cubes for all of the undetected faults.

For each bit that is added to tBequence ID Register,
the first step is to determine for which patterns the bit will
be active (i.e., which patterns it will alter). In order not to
reduce the fault coverage, it is important to chaoset of
patterns that don’'t currently drop any faults in the
circuit-under-test. In order to minimize the Bit-Fixing
Sequenc&dection Logic, it is important to choose a set
of patterns that are easydecode. The set of patterns for
which the newSequence IDRegisterbit will be active are
decoded from the starting state of the LFSR for each
pattern. Let F be a Boolean function equal to the sum of
the minterms corresponding to the starting state for each
pattern that drops faults. Then an implicant in F'
corresponds to a set of patterns that don’t drop faults and
can be decoded by an n-input AND gate where n is the
number of literals in the implicant. A binate covering
procedure can be used to choose the largest implicadit
(see[Touba 95]). The largest implicant requires the least
logic to decode and corresponds to the largest set of
pseudo-random patterns that dairop any faults and thus
ismost desirable. These are the patternsthat will activate,
and hence be altered by, the nsagquence ID Registdit.

In the design example, there are 5 starting LFSR
states that correspond to the patterns that drop faults.
They are listed at the top of Fig. 5. The function F is
formed, and théargest implicant in the complement of F
isfound. The largest implicant is 00XXX Whenever the
first two bits in a starting state of the LFSR are both ‘0,
then the newsequence ID Registért is activated. Thus,
there are 4 patterns for which the new Sequence ID
Registerbit will be activated.

After the set of patterns that activate the r&squence
ID Register bit have been determined, the next step is to
determine which bits in the patterns will be fixeten the

new Sequence ID Registéit is activated. The goal is to
fix the bits in a way that embeds as many test cubes as
possible. The strategy is to find some good candidate sets
of bits to fix and then compute how many test cubes
would be embedded if each were used. The candidate that

embeds the largest number of test cubes is then selected.

The candidate sets of bits to fix are determined by
looking at hit correlation among the test cubes. For
example, if the two test cubes 1010Xand00X11are to be
embedded, then fixing the 2nd bit positiontoa‘0’, the 3rd
bit position to a ‘1’, and the 5th bit position to a ‘1’
would help to embed both test culbeshe pseudo-random
bit sequence. But, fixing the 1st bit to a ‘1" or fixing the
4th hit to a ‘0" would only help to embed the first test
cube; it would prevent the second test cube from being
embedded. The reason for this is that the two test cubes
have conflicting values in the 1st and 4th bit. So given a
set of test cubes to embed, the best bits to fix are the ones
in which there are no conflicting values among the test
cubes. The procedure for selecting $aeof bits to fix is
as follows (the procedure is illustrated for the design
example at the bottom of Fig. 5):

1. Place all test cubes to be embedded into the initial set of
test cubes.
Begin by considering all of thiest cubes that need to
be embedded.
[In the design example in Fig. 5, all 4 test
cubes are considered initially.]

2. Identify bits where there are no conflicting values
among the test cubes.

Look at each bit position. If one or more test cubes
has a‘l’ and one or more test cubes hasa ‘0’ in the bit
position then there is a conflict. If al of the test cubes
have either a ‘1’ (‘0’) or an ‘X', then the bit can be fixexl
a‘'l’ (‘0.

[In the desigrexample in Fig. 5, when al 4
test cubes are considered, only the last bit
position has no conflicting values. All 4 of the
test cubes have either a‘0’ or an ‘X’ in the last
bit position.]

3. Compute the number of test cubes that would be
embedded by fixing this candidate set of bits.

For each pattern that activates the new Sequence ID
Registerbit, fix the set of bits that was determined in

step2. Count the number of test cubes that are embedded

in the resulting patterns.

[In the design example in Fig. 5, when the
last bit position is fixed to a ‘0’ in the 4 scan
patterns that activate the new Sequence ID
Register bit, it enables the test cube
01XX01XXXX10to be embedded in the
pseudo-random pattefi1110110001]



4. |f the number of test cubes embedded is larger than that

remaining test cubes to be embedded. Thus, this is the

of the best candidate, then mark this as the best candidate.selected set of bits to fix when the new Sequence ID

The goal is choosing the set of bitsto fix is to embed
as many test cubes as possible.

5. Remove the test cube that will €eliminate the most
conflicts.

One test cube is removed from consideration in order
to increaséhe number of bits that can be fixed. The test
cube that is removed is chosen based on reducing the
number of conflicting bits in the remaining set of test
cubes.

[In the desigrexample in Fig. 5, if the third
test cube is eliminated from consideration, the
remaining 3 test cubes have two specified bit
positionswhere there are no conflicts. The third
bit can be fixed to a ‘1’ in addition to fixing the
last bittoa“‘0'.]

6. If the number of test cubes that are embedded by the
best candidate is greater than tenber of test cubes that
remain, then select the best candidate. Otherwise, loop
back to step 2.

The next candidate set bits to fix will only help to
embed the remaining set of test cubes, and therefore has
limited potential. If it is not possible for the next

candidate to embed more test cubes tharbest candidate,

then the best candidate is selected as the set of bitsto fix.

7. Eliminate as many fixed bits as possible without
reducing the number of embedded test cubes.

In order to minimize hardware areg, it is desirable to
fix as few hits as possible. It may be possible to embed
the test cubes without fixing all of the bits in the selected
set. An attempt is made to reduce the number of fixed bits
by eliminating one bit at atime and checking to see if the
same test cubes are embedded.

The bit-fixing sequence generatiar designed so that
when the newsequence ID Registbit is activated, the set
of bits selected by the procedure above is fixed. The
pseudo-randorpatterns that are altered to embed each test
cube are added to the set of patterns that drop faults (one
pattern per embedded testbe). This is done to ensure
that those patterns are not further altered such that they
would no longer embed the test cubes. If the fault
coverage is not sufficient after adding tiesv Sequence 1D
Register bit, then another Sequence ID Register hit is
added to embed more test cubes.

In the design example in Fig. 5, when al 4 test cubes
are considered, the only specified bit position where there
are no conflictsisthe last bit position which can be fixed
to a ‘0’. Fixing this bit enables one test cube to be
embedded. However, when one of the test cubes is
eliminated from consideration then the remaining 3 test
cubes have two specified hit positions where there are no
conflicts. Fixing these two bits enables al 3 of the

Registerbit is activated. There is till one test cube that
hasnot been embedded. Since complete fault coverage is
required, another bit must be added to the Sequence ID
Register The three pseudo-random patterns in which the
three test cubes were embedded are added to the set of
patterns that drop faults, and the procedure for addimegva
Sequence ID Registbit is repeated.

3.3 SynthesizingBit-Fixing Sequence
GenerationLogic

When enough bits have been addethe&oSequence ID
Registerto provide sufficient fault coveragthe remaining
task is to synthesize the Bit-Fixing Sequence Generation
Logic. The Bit-Fixing Sequence Generation Logic
generates théx-to-1 andfix-to-0 control signals to fix the
appropriate bits in the sequence depending on which
Sequence ID Register bits are active. For each Sequence
ID Registerbit that is active, control signals are generated
when certain states of the counter are decoded.

The proces®f constructing the Bit-Fixing Sequence
Generation Logids best explained with an example. The
Bit-Fixing Segquence Generation Logic for the design
example is shown in Fig. 6. The first bit in the Sequence
ID Registeris activated whenever the first two bits in the
starting seed for a pattern are both *0’. This condition is
decoded using a two-input AND gate and loading the
Sequence ID Register right before shifting a new pattern
into the scan chain. When the first bit in the Sequence ID
Registeris active, it fixes the 1st bit shifted into the scan
chainto a‘0’ and the 10th bit shifted into the scan chain to
a‘l. Thisis done by generating a fix-to-0 signa when
the counter is in the “cnt-1" state and a fix-to-1 signal
when the counter isin “cnt-10" state. The second bit in
the Sequence ID Registés activated whenever the 3rd and
4th bit in the starting seed for a pattern are both *1’. When
the second bit in the Sequence ID Register is activated, it
fixes the 2nd bit shifted into the scan chain to a‘0’. This
is done by generatingfix-to-0 signal when the counter is
in “cnt-2" state.

LFSR (5 stages)

Mod-13 Counter| Bit 1| Bit 2| Seq. ID Reg.

L

d& ]

& |ent-10  Fix-to-1

Figure 6. Design Example: Bit-Fixing Sequence
Generation Logic Prior to Multilevel Logic Optimization



Table 1. Resultsfor 100% Fault Coverage for a Test Length of 10,000 Pseudo-Random Patterns

Circuit Reseeding Bit-Fixing Sequence Generatgr
[Hellebrand 95b]
Scan Max. Num LFSR ROM LFSR | SeqID | Literal
Name| Size | Specified Bit§{ _Size Bits Size | Reg Size| Count
s420 34 20 20 250 20 1 27
14 3 70
10 4 70
s641 54 22 22 183 22 2 63
14 4 87
9 6 109
s838 66 36 36 1623 36 5 168
14 7 176
12 7 199
51196 32 17 17 267 17 4 67
14 4 71
12 8 102
s5378 214 19 27 726 19 3 163
14 4 174
12 9 367
C2670| 233 48 60 3412 48 4 328
16 5 334
10 12 427
C7552| 207 100 100 5241 100 7 741
36 8 782
17 13 828
When constructing the Bit-Fixing Sequence  flip-flops in each circuit were configured in a scan chain.

Generation Logicthe states of the counter can be decoded
by simply using n-input AND gates where n is equa to
the number of bits in the counter. However, once the
logic has been constructed, it shouldni@imized using a
multilevel logic optimization tool. The don't care
conditions due to the unused states of the counter can be
used to minimize the logic, but more importantly, the
logic can be factored. Because the numbénpits to the
logic is small, factoring is very effective for significantly
minimizing the Bit-Fixing Sequence Generation Logic

Since the Bit-Fixing Sequence Generation Logic is
synthesized from atwo-level starting point, it can be made
prime and irredundant usirgynthesis procedures such as
those described in [Bostick 87] and [Rajski 9H.the full
don't care set is used (i.e., all input combinations that
don't occur during BIST ardon't cares), then the resulting
logic will be 100% tested for single stuck-at faults by the
patterns applied during BIST [Bartlett 88].

4. EXPERIMENTAL RESULTS

The procedure described in this paper has been
implemented in Stanford CRC's synthesis-for-test tool,
TOPS, and was used to design bit-fixing sequence
generators for ISCAS 85 [Brglez85] and ISCAS 89
[Brglez89a] benchmark circuits that contain
random-pattern-resistant faultsThe primary inputs and

The bit-fixing sequence generators were desigaguovide
100% fault coveragef all detectable single stuck-at faults
for atest length of 10,000 patterns.

The results are shown in Table 1. The size of the
scan chain is shown for each circuit followed by the
maximum number of specified bits in any test cube
contained in the test set reported in [Hellebrand 95b]. |If
the characteristic polynomial of thd=SR is primitive (as
isthe case in these results) and the number of stagesin the
LFSR is greater than or equal to the number of specified
bitsin atest cube for afault, then the LFSR is guaranteed

to be capable of generating patterns that detect the fidult.

the number of stagesin the LFSR is less than the number
of specified bitsin atest cube for some fault, then it may
not be possible for the LFSR to generate a pattern that
detects the fault due to linear dependencies in the LFSR.
Results are shown for the bit-fixing sequence generator
required for different size LFSR's. For each different size
LFSR, the number of bits in the Sequence ID Register is
shown along with the factored form literal count for the
multilevel logic required to implement the bit-fixing
sequence generator. For each circuit, results were shown
for an LFSR with as many stages as the maximum
number of specified bitsThese LFSR's are guaranteed to
be capable of generating patterns to dedkbadf the faults.
For the smaller LFSR's, there are some faults that are not
detected because of linear dependencies in the LIE3Ra
test cubes must be embeddedrider to detect those faults



thereby resulting in an increase in the arethefit-fixing
sequence generator. Aan be seen, in some cases adding
just a small amount of logic to the bit-fixing sequence
generator permits the use of a much smaller LFSR.
Consider C267Q using a 16-stage LFSR instead of a
48-stageLFSR only requires an additional 6 literals.
However,in some cases there is a large increase in the
amount of logic required for using a smaller LFSR.
Consider s5378 using a 12-stage LFSR instead of a
14-stage LFSR increases the amount of logic in the

bit-fixing sequence generator by more than a factor of two.

Results for the reseeding method presented in
[Hellebrand 95b] are shown in Table 1 for comparison.
The size of the LFSR and the number of bits stored in a
ROM are shown. Note that the reseeding method requires
that the LFSR have at least as many stages as the
maximum number of specified bitsin any test cube. It is
difficult to directly comparehe two methods because they
are implemented differently (ROM versmailtilevel logic)
and requirevery different control logic. The reseeding
method requires that the LFSR have programmable
feedback logic and parallel load capability as well as
additional control logic for loading the seeds from the
ROM.

5. CONCLUSIONS

There are three new and important features that
distinguish the mixed-mode scheme presemdtiis paper
from other mixed-mode schemes for test-per-scan BIST.
The first is that test cubes for the random-pattern-resistant
faults are embeddeih the pseudo-random bit sequence.
Since there are so many possible pseudo-random patterns
in which to embed each test cube, the bit-fixing required to
embed a set of test cubes can be correlated in certain bit
positions to minimize hardware. The second featutieais
a one-phase test is used. Having only one phase
simplifies the BIST control logic. Thethird feature is that
smallerLFSR’s can be used. There is a tradeoff between
the size of the LFSR and the amount of bit-fixing logic,
so the LFSR size can be chosen to minimize the overal
area. These three features make the scheme presented in
this paper an attractive option for BIST in circuits with
scan.

One way to achieve aven greater overhead reduction

may be to combine the bit-fixing technique described in
this paper with reseeding techniques. By reseeding the
LFSR with just a few selected seeds to generate some of
the least correlated test cubes that requiat af bit-fixing
to embed, it may be possible to significantly reduce the
complexity of the bit-fixing sequence generator. Thisidea
is currently being investigated.

Another way to reduce the overhead would be to
develop a special ATP@rocedure that finds test cubes for
each r.p.r. fault in away that maximizes the bit correlation
among the test cubes. This would reduce the amount of
bit-fixing that is required to embed the test cubes. The

results in [Hellebrand 95b] indicate that modifying the
ATPG procedure can make significant differendéis idea
is also being investigated.

Note that while the experimental results presented in
this paper were for single stuck-at faults, the approach of
embedding deterministic test cubes in a pseudo-random
sequence works for other fault models (e.g., multiple
stuck-at faults and bridging faults) as well.
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