
1

ACS Implementation of A Robotic Control Algorithm with Fault
Tolerant Capabilities

Shu-Yi Yu, Nirmal Saxena, and Edward J. McCluskey

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, California 94305-4055

Abstract
This paper demonstrates that an adaptive

computing system (ACS) is a good platform for
implementing robotic control algorithms. We show that
an ACS can be used to provide both good performance
and high dependability. An example of an FPGA-
implemented dependable control algorithm is presented.
The flexibility of ACS is exploited by choosing the best
precision for our application. This makes it possible to
reduce the amount of required hardware and improve the
performance. Results obtained from a WILDFORCE
emulation platform showed that even using 0.35µm
technology, the FPGA-implemented control algorithm has
comparable performance with the software-implemented
control algorithm in a microprocessor based on 0.25µm
technology. Different voting schemes are used in
conjunction with multi-threading and hardware
redundancy to add fault tolerance to the robotic
controller. Error-injection experiments demonstrate that
robotic control algorithms with fault tolerance techniques
are orders of magnitude less vulnerable to faults
compared to algorithms without any fault tolerant
features.

1. Introduction
Adaptive Computing Systems (ACS) augment the

traditional Von Neumann processor-memory computation
model by a fabric of reconfigurable hardware. One model
of the ACS architecture consists of CPU, I/O, memory,
and reconfigurable coprocessors. For example, a compiler
[Gokhale 98] can partition and map applications into parts
that run well on traditional fixed instruction processors
and parts that run well on the reconfigurable coprocessor.
Commercial implementations of the ACS model range
from a single chip [Gokhale 98], a multi-chip board
[Annapolis 99][TelSys 99][Xilinx 99], or a multiple-
board system [Quickturn 99]. Figure 1 illustrates an
example of an ACS using a Xilinx Virtex series FPGA as
a reconfigurable component.

VIRTEX
FPGA
Chip

Low
Voltage

CPU

SRAM Cache
(Mbytes)

133MHz
SDRAM

Chip1 Chip2

High Speed System Backplane

Figure 1. A Xilinx Virtex chip as a system component- an
ACS implementation [Xilinx 99].

Applications that are well suited for ACS are:
digital signal processing, image processing, control, bit
manipulation, compression, and encryption [Saxena 00].
Most of the research and development in the ACS area
has been dictated by the performance requirements of
target applications. Performance is an important
requirement; however, the use of ACS applications in
areas like nuclear reactors, fly-by-wire systems, remote
(space station) locations, and life-critical systems makes
dependability also an important requirement.
Dependability in an ACS can be enhanced by exploiting
the ability of reconfiguration to repair hardware when
faults are present. With very few exceptions [Culbertson
97][Lach 98], little work has been done in the dependable
ACS area. This research is part of the ROAR1 project
[Saxena 98], whose objective is to provide dependable
computing solutions in an ACS framework. The main
thrust of this paper is the instrumentation of robotic
control algorithms in ACS environments.

Robots are frequently used under hazardous or
remote circumstances, such as in nuclear power plants
[Kim 96] or in spacecraft [Wu 93]. Maintenance and
repair is usually very expensive and time-consuming for
these applications. A lot of research has been done

1 ROAR stands for Reliability Obtained by Adaptive
Reconfiguration.

2

seeking ways of providing an effective fault tolerant
robotic system. Researchers have explored techniques for
introducing fault tolerant capabilities into robots. For
example, different control schemes are presented in [Ting
94][Yang 98]. Redundancy and voting in joint and
actuator levels are suggested in [Tosunoglu 93][Toye
90][Thayer 76]. [Toye 93] and [Hamilton 92] discuss
architecture level redundancy, [Hamilton 94][Visinsky
95] present a fault tolerant architecture and framework for
robotics. [Toye 93] presents different voting methods in
robotic application. Metrics to evaluate fault tolerance
versus overhead in robotic systems have also been
investigated [Hamilton 96a][Hamilton 96b].

With the exception of [Hamilton 92] and
[Hamilton 94], most of the cited research work
concentrate in either the control or the mechanical field.
Not much work has been done in fault tolerance of the
electronic hardware where control algorithms are
implemented. A conventional way of controlling a robot
is to run the control algorithms on general-purpose
computers. Figure 2, for example, shows a mobile Puma
560 Manipulator [Khatib 95], in which a Pentium CPU is
used to compute the force strategies. In this paper, we
implement the control algorithm on FPGAs to show the
feasibility of ACS in the robotic area in terms of high
dependability and performance.

Figure 2. Puma 560 manipulator used in SAMM project
[Khatib 95].

In the following sections, we present our
implementation of a fault tolerant control algorithm in an
ACS environment. Section 2 introduces the robotic
control system. Section 3 presents the fault tolerance
techniques implemented in the control system. Section 4
describes the implementation of the system in both
general-purpose processors and reconfigurable hardware.
Results of emulation of the control system are also shown
in this section. Section 5 describes the evaluation of fault
tolerance techniques and experimental results. Section 6
concludes this paper.

2. Control System
Figure 3 shows a block diagram of a general

feedback-control robot system [Craig 89]. It consists of a
robot unit and a control unit. The robot unit represents the

mechanical part, and the control unit represents the
electronic part. The interface between the robot unit and
the control unit includes sensors and A/D, D/A
converters. The sensors sample the current position of the
mechanical part and transform it to an analog signal
(voltage or current). The A/D converter converts the
signal and sends it to the control unit. The desired
trajectory and other control parameters are supplied by the
user to the control unit. The control parameters describe
the characteristics of the robot unit. The control unit
collects data and calculates the needed force. The
calculated value is converted to an analog signal, and that
signal drives the motor to move the robot.

Force

Current
Position

Control
Unit

Robot
Unit

Desired
Position

Control
Parameters

Figure 3. Block diagram of a feedback-controlled robot
system.

The robot can be modeled as a second-order
linear mechanical system. We apply a second-order linear
control algorithm to control the robot. A detailed
description of the system and the algorithm is in the
appendix. The designs are emulated and implemented in
two ACS test-beds: Quickturn’s System Realizer
[Quickturn 99] and WILDFORCE Board [Annapolis 99].
We have used the Quickturn System Realizer test-bed as a
validation tool for our ACS designs. To get more accurate
performance and implementation data, we have used the
WILDFORCE board because its structure more closely
resembles the ACS architecture model (described in
Section 1). These test-beds are described in Sec. 4.1.

This paper focuses on the control unit. In the
design of the control unit, we use two approaches to
implement different fault tolerance techniques. In the first
approach, the algorithm is implemented as a fully
combinational circuit. In the second approach, the
algorithm is implemented in multiple stages and hardware
is reused. A detailed description of the control unit is in
Sec 4.1.

The performance of the controller affects the
performance of a whole robotic system. The rate of
producing a corresponding control force is called the
servo rate [Craig 89]. The servo rate needs to be fast
enough to keep track of the inputs, to reject disturbance
from the outside world, to prevent aliasing, and to
suppress the natural resonance of the mechanical part. In

3

this paper, the performance achieved by different
implementations of the control unit, with or without fault
tolerance, is examined and compared.

The controller needs to be designed with proper
precision to meet the requirement of the robotic
application and to accommodate the characteristics of the
robot. The tolerable steady-state error differs among
applications, and the resolution and accuracy vary among
robots. Hence the needed precision of the controller varies
among applications. There is a trade-off among precision,
performance, and hardware overhead. To implement the
control algorithm, we need to choose the precision that
meets all the application requirements while taking less
hardware overhead and giving the highest performance.
ACS provides the flexibility of varying precision. The
design can be optimized by choosing the precision of the
system. Section 4.1 discusses experiments on different
precision.

3. Fault Tolerance Techniques
Because of safety issues in robotic applications,

fault tolerance techniques are needed to improve the
dependability of the control system. To determine suitable
fault tolerance techniques for our ACS robotic
application, two techniques are implemented and
compared. One is multi-threading, and the other is
hardware redundancy.

The concept of using multi-threading has been
described in [Thorton 64] and [Smith 78]. The idea of
using multi-threading for fault tolerance was described in
[Saxena 98]. This is illustrated in Fig. 4. Figure 4 (a)
shows an algorithm executed in multiple stages in limited
hardware. Some resources are under-utilized (idle) due to
data dependencies and memory latency. By scheduling
multiple independent threads most of the idle resources
can be reclaimed. To obtain fault tolerance by multi-
threading, multiple copies of the same algorithm are
executed as multiple threads in the hardware. The final
output is obtained by voting among the results from
different threads. As shown in Fig. 4 (b), the replicated
instructions of the redundant thread can be inserted into
the idle stages to minimize timing overhead. In a fault-
free scenario, identical outputs are produced from all
threads. When faults are present, the redundant threads
provide a means for fault detection and fault masking.

In hardware redundancy, the hardware is
replicated into multiple copies. The input is connected to
all of the modules. In case of two copies, a comparator is
used to detect the errors. For three copies and more, a
voter is used to determine the final output among the
outputs from the modules. The replicated copies provide
fault detection and possibly fault masking capabilities.
Figure 4 (c) illustrates an example of duplex system (two-
modular hardware redundancy).

idle idle

(a)
replicated replicated replicated replicated

=

register

(b)
idle idle

=replicated

original

idle idle

(c)

Figure 4. Multi-threading vs. hardware redundancy: (a) an
algorithm in multiple stages, (b) multi-threading, and (c)
hardware redundancy.

Possible voting schemes used in conjunction
with fault tolerance techniques include exact (bit-by-bit)
majority voting, median voting, weighted average voting,
plurality voting, and others. In an NMR (N-Modular
Redundancy) system, these voting schemes are
indistinguishable when there is only one faulty module.
These different voting schemes behave differently in the
presence of multiple-module failures. Comparison among
various voting schemes is reported in [Bass 97]. In this
paper, we implement two voters in our design and
compare their behavior. One is the majority voter, which
is widely used, and the other is the median voter, which
performs the best in Bass’ paper. The majority voter
selects the bit-wise output agreed by the majority among
the modules. The median voter selects the median value
of the outputs from different modules.

Error detection mechanism is added in
conjunction with voters to provide error-detecting ability.
Figure 5 illustrated the voter with error detection. The
inputs are compared with the voted output, and if it is
different, error signals will be generated.

Input0
Input1
Input2

Voted Output

ERR0

ERR1

ERR2

Voter

=

=

=

Figure 5. A voter with error detection mechanism.

4

To evaluate the fault tolerance techniques, we
considered dependability, and overhead in terms of area
and performance degradation. The area and performance
are examined by implementing the system in
reconfigurable hardware. The experiments are described
in Sec 4. The dependability of the systems is examined
through fault injection experiments that yield data on
numbers of detected faults and corruption. Fault injection
experiments are described in Sec. 5.

4. Implementation of the Control Algorithm
The feasibility of implementing robotic

algorithms in ACS environment is demonstrated by the
implementation of a second-order linear control algorithm
in ACS hardware, Quickturn System Realizer and
WILDFORCE board. For the purposes of comparison,
the algorithm is also implemented in C programs running
on general-purpose processors. To investigate the area
overhead and the performance degradation of designs
with fault tolerant features, different fault tolerance
techniques are implemented in the control system for a
comparative evaluation. In addition, the controllers are
designed using different numbers of bits to exploit the
flexibility of ACS hardware.

Section 4.1 describes implementation in ACS
hardware. Section 4.2 explains the implementation of the
C program and shows performance data. Section 4.3
discusses our results.

4.1 ACS Implementation
To demonstrate the feasibility of the dependable

ACS implementation of robotic algorithms, we use a
commercial reconfigurable system, Quickturn’s System
Realizer [Quickturn 99], and a multi-chip FPGA board,
the WILDFORCE board [Annapolis 99], as our platforms.
The controller is initially emulated in the Quickturn’s
System Realizer to verify its functionality. It is then
implemented on the WILDFORCE board.

Quickturn’s M250 System Realizer is an
emulator from Quickturn Design Systems. The System
Realizer comprises of one Logic Module (LM), one Probe
Module (PM), and one Control Module (CM). A LM
contains Quickturn MUX chips and 80 Xilinx LCA4013
FPGAs. In each FPGA, up to 13k logic gates can be
implemented. The LM performs the logic function of the
design. The PM contains an integrated logic analyzer and
stimulus generator. The PM applies test vectors to the
design and records output responses. The CM contains an
embedded CPU and hard-disk drives. It controls the
System Realizer and provides network connectivity.
Additional Target Interface Modules (TIMs) can be used
for the connection of emulation engines and the target
system for in-circuit emulation. The I/O cards in TIMs
can be replaced with other devices, such as embedded
memory or analog circuits.

Figure 6. Quickturn's M250 System Realizer [Quickturn
99]

The WILDFORCE board is a PCI-based custom
reconfigurable multi-chip system. A layout and a block
diagram of the WILDFORCE board are shown in Fig. 7.
The system has five processing elements: one
Control/Processing Element (CPE) and four Processing
Elements (PE1 through PE4.) The PEs consist of Xilinx
4036XLA FPGAs, each of which can realize up to 36k
logic gates. Each PE has a 1Mb of local memory. All of
the local memories are accessible to the host processor
through the PCI bus. A crossbar is used to provide
communication among PEs on the board. Each PE has
one 36-bit connection to the crossbar, and CPE has two.
The crossbar is composed of three Xilinx XC4006E
FPGA devices. The PE array connects to the PCI bus
through a set of bi-directional synchronous FIFOs. The
maximum frequency of FIFO access is 50MHz. The
board is capable of generating PE clock rates ranging
from 300kHz to 55MHz.

(a)

(b)
Figure 7. The WILDFORCE board [Annapolis 99]: (a) a
layout, and (b) a block diagram.

In the control unit design, we use two
architectures to implement different fault tolerance

5

techniques. To implement multi-threading, the control
algorithm is divided into multiple stages, and the
hardware resources are reused. The computation is
replicated as different threads. The threads share the same
hardware resources. To implement hardware redundancy,
the control unit is designed in combinational circuit and
replicated.

To find the suitable precision for our control
system, the controller is designed in different precision.
We evaluated controllers with the robotic characteristics,
such as the response time, the steady-state error, and the
time to stabilization. Among all systems that meet the
application requirement, the lowest-precision design is
selected to minimize the hardware overhead and to
optimize the performance.

Table 1 lists the simulated response data of
systems with different precision in Verilog. The precision
is 32, 24, 16, and 12 bits, respectively. With the given test
trajectory, the systems work well in all precision except
for 12 bits. In the 12-bit system, arithmetic overflow
occurs resulting in overshoot of the output waveform. As
shown in table 1, the response time and the time to
stabilization of systems with 32, 24, and 16-bit numbers
are almost the same. The major difference among the
systems is accuracy: a higher-precision system has less
steady-state error. Therefore, in terms of the response of
the system, as long as the requested data range does not
cause arithmetic overflow in the system and the steady
state error is tolerable, a low-precision system is sufficient
for the application while taking less area and shorter
execution time than a higher-precision design. From the
simulation results, the 16-bit system was the implemented
choice on the WILDFORCE board.

Table 1. Square wave response for systems with different
precision.

Number of bits 32 24 16 12
Steady state error(%) 0.006 0.1 2
Time to stabilization
(<0.1%) (cycles)

135 133 145

Response time (cycles) 1 1 1

The designs emulated on Quickturn’s emulator
are written in Verilog RTL code. The code is synthesized
and compiled by Quest software. The compiled data are
downloaded to the emulator. Test vectors are applied to
the emulated circuit to verify the designs.

Table 2 lists the designs emulated on the
Quickturn’s System Realizer. The designs use multi-
threading as the fault tolerance technique. For the three-
thread design, both 32-bit and 16-bit numbers are
implemented.

Table 2. Emulation on Quickturn’s System Realizer.
Threads 1 2 3
Number of bits 32 32 32 16

Number of FPGAs 29 29 1032 20
of Stages 7 9 11 11

The designs implemented on the WILDFORCE
board were written in VHDL code. The code was
synthesized with Synplify. The placement and routing
was done with the software provided by Xilinx.

The control system is implemented in two PEs.
The control unit is in PE1, and the robot unit is in PE2.
The two units are separated in two chips for fault injection
purposes. The two units communicate through the bus
between PE1 and PE2. Input vectors are applied from the
computer through FIFO1. Output values are transmitted to
the host computer through FIFO4.

Tables 3 and 4 show the emulation results on the
WILDFORCE board. In the tables, the hardware area is
represented by the number of Look Up Tables (LUTs)
and registers used in FPGAs. In the Xilinx XC4000 series
FPGAs, the logic function is provided by Configurable
Logic Blocks (CLBs). A CLB consists of two four-input
LUTs (F LUTs), one three-input LUT (H LUT), and two
registers. The number of LUTs is the total number of
mapped F LUTs and H LUTs. The data is obtained from
report files of a Xilinx placement-and-route tool.

Table 3. Emulation results on WILDFORCE board –
hardware redundancy.

of Modules 1 2 3 3
Voter Type --- --- Med Maj
LUTs (total 3888) 404 819 1284 1257
Registers (total 2592) 115 230 345 349
Frequency (MHz) 24 26 22 24
Latency (µs) 0.042 0.038 0.045 0.042

Table 4. Emulation results on WILDFORCE board –
multi-threading.

of Threads 1 2 3 3
Voter Type -- --- Med Maj
LUTs (total 3888) 409 814 1248 1251
Registers (total 2592) 362 636 945 945
of Stages 7 8 11 11
Frequency (MHz) 50 50 50 50
Latency (µs) 0.14 0.16 0.22 0.22

2This design was emulated in Quickturn M3000 System
Realizer, which is larger than M250. Other designs shown on the
table were emulated in Quickturn M250 System Realizer.

6

4.2 Control Algorithm on General-Purpose Processors
We also implemented the control algorithm in C

programs and ran them on Ultra Sparc II and Pentium II
Xeon processors. Two data types are used: single
precision floating-point numbers (32 bits), and fixed-point
numbers (32 bits). Redundancy is achieved by duplicating
the code inside the program. Table 5 shows the latencies
of the C programs on general-purpose processors. The
latencies for floating-point numbers range from 0.184 to
11.704µs, while those for fixed-point numbers range from
0.033 to 0.646µs. These results are compared with the
performance of the ACS implementation in the next
section.

Table 5: Performance of the control algorithm on general-
purpose processors.

Latency (µs)

Ultra SPARC3

(300MHz)
Pentium II Xeon

(450MHz)
of

Copies
Voter Type

Float Fixed Float Fixed
1 --- 0.184 0.099 3.866 0.033
2 --- 0.290 0.376 7.699 0.080
3 Majority 0.481 0.641 11.182 0.126
3 Median 0.462 0.646 11.704 0.126

4.3 Discussion
In this section, the results from the implemented

designs on the WILDFORCE board are compared with
the results obtained from general-purpose processors.

As shown in Table 3, the designs with hardware
redundancy have latencies ranging from 0.038µs to
0.045µs. As shown in Table 4, all designs with multi-
threading are limited by the maximum frequency of the
board, which is 50MHz. The latencies range from 0.14µs
to 0.22µs, which are proportional to the number of stages.
The designs with hardware redundancy have shorter
latencies than the multi-threaded designs because they are
fully combinational.

As the area results show, the area overhead is
roughly proportional to the number of modules or
threads. It does not differ much between different fault
tolerance techniques or different voting schemes except in
the number of registers. Multi-threaded designs require
more registers because hardware is reused and
intermediate results need to be stored. For hardware
redundancy, results are coherent with what can be
inferred by observation of Fig. 4 (c), that is, resources are
replicated. However, in the designs with multi-threading,
even when resources are reused, the area overhead is not
significantly reduced. The reason is that in the

3 The listed results may be pessimistic due to the inaccessibility
of 64-bit compiler.

implemented algorithm, the area of the reused hardware
resources is small compared to the additional registers and
the interconnection resources for those registers, which
are proportional to the number of threads. In systems that
use large and complicated hardware to process data,
multi-threading may take advantage of reusing resources
and may reduce hardware overhead. In our case, the
designs with hardware redundancy have better
performance and less area overhead than those with multi-
threading.

To evaluate the performance of the designs in
ACS hardware, Fig. 8 shows the best performance from
the algorithm in both general-purpose processors and
reconfigurable hardware. Pentium II Xeon processor is in
0.25µm technology and Xilinx FPGA chips used in the
WILDFORCE board are based on 0.35µm technology. It
is shown that even when an older generation FPGAs were
used, the performance obtained in reconfigurable
hardware is comparable to that of the later generation
general-purpose microprocessors. Note that to exploit the
flexibility of ACS and to customize the design, the
controller on the WILDFORCE board is designed in 16-
bit fixed-point numbers.

0.033
0.038

0

0.01

0.02

0.03

0.04

Latency

micro
seconds

Pentium II Xeon

WILDFORCE

Figure 8. Performance of implementations on general-
purpose processor and ACS.

5. Evaluation of Fault Tolerance Techniques
To enhance the dependability of the control

system, we implemented fault tolerance techniques into
the robotic controller. Evaluation is needed to determine
the suitable fault tolerance technique for the implemented
system in reconfigurable hardware. We consider
dependability and overhead in terms of area and
performance degradation for evaluation in our
implementation.

The evaluation of dependability is done by
injecting faults into the control unit of the system. Hence
detection coverage and fault tolerance capabilities can be
determined. To model stuck-at faults at combinational
gates’ outputs, the injected faults include stuck-at-one and
stuck-at-zero faults at outputs of LUTs used by the
design. All possible single stuck-at faults in each design
are examined. To compare the effectiveness of the voters
under the presence of multiple faults, double stuck-at
faults are injected in designs with majority voters and

7

median voters. For each examined design, five thousand
stuck-at fault pairs are chosen randomly. Output vectors
of fault-injected designs are compared with those of fault-
free designs. An output is considered corrupted if its value
is different from the output of fault-free systems. Tables 6
and 7 list the results of single stuck-at fault injection
experiments. Table 8 lists the results of double stuck-at
fault injection experiments.

Table 6. Single stuck-at fault injection in designs with
multi-threading.
of Threads 1 2 3 3
Voter Type --- --- Med Maj
Injected Faults 936 1843 2803 2830
Corrupted w/o Detection 806 18 39 7
Corrupted w/ Detection 0 788 121 46
Detected w/o Corruption 0 785 2284 2404
No Detection & Corruption 130 252 359 373

Table 7. Single stuck-at fault injection in designs with
hardware redundancy.
of Modules 1 2 3 3
Voter Type --- --- Med Maj
Injected Faults 952 1932 2932 2812
Corrupted w/o Detection 825 1 4 1
Corrupted w/ Detection 0 835 102 32
Detected w/o Corruption 0 857 2442 2428
No Detection & Corruption 127 239 384 351

Table 8. Double stuck-at fault injection in designs with
different voters (5000 fault pairs are randomly chosen).
Fault Tolerance Technique Multi-

Threading
(3 threads)

Hardware
Redundancy

(3 copies)
Voter Type Med Maj Med Maj
Corrupted w/o Detection 24 7 0 0
Corrupted w/ Detection 1754 1437 1656 1796
Detected w/o Corruption 3139 3464 3250 3125
No Detection & Corruption 83 92 94 79

Tables 6 and 7 show that in the single-threaded
and single-modular designs, which do not have any fault
tolerance or error-detecting scheme, almost all of the
injected faults result in corruption. For the designs with
fault tolerance techniques, the undetected corruption
caused by single faults only occur when the fault is
injected in the comparator (error detector), I/O logic, or
the common logic part, such as the scheduler. Therefore
the undetected corruption is less likely to appear.

The two-threaded and two-modular designs only
have error detecting but not fault masking mechanism. In
these designs, the number of detected corruption is
roughly the same as the number of detection without
corruption. The reason is because the output of the
designs is from one of the two identical threads or

modules, and the probability of fault occurrence in the
output thread or module is roughly 50%. The reliability
can be improved if diversity is used between modules or
threads [Mitra 99].

From the single stuck-at fault results, the three-
threaded and three-modular designs, which have fault-
masking mechanism, have much lower numbers of
corruption than other designs. The results of both single
and double stuck-at faults show that the designs with a
majority voter produce smaller numbers of undetected
corruption than the designs with a median voter. It means
that the median voter is more vulnerable to stuck-at faults
than the majority voter, and is less able to detect
corruption. The reason is because a stuck-at fault may
affect several outputs of the median voter at the same time
due to the error propagation through the carry chain. On
the other hand, in a majority voter, voting is done bit-by-
bit. Therefore, a stuck-at fault will affect, in the worst
case, one bit of the outputs of the majority voter.

The numbers for undetected corruption in
designs with hardware redundancy are much smaller than
those of designs with multi-threading. It is because multi-
threaded designs have more hardware that is commonly
shared by different threads, such as schedulers and control
logic. Therefore, faults are more likely to affect resources
that are shared by several threads, and consequently, an
error detection mechanism will not detect them. On the
contrary, the designs with hardware redundancy replicate
the whole module, hence a single fault can affect only one
module, and corruption occurs only if the fault is in the
voter.

Recalling the results of implementation in Sec. 4,
the designs with hardware redundancy have better
performance and less area overhead than those with multi-
threading. From the fault injection experiments in this
section, we can conclude that in our implementation,
hardware redundancy provides higher dependability and
has lower overhead. Therefore, hardware redundancy is
more adequate to implement our robotic application than
multi-threading.

6. Conclusion
We have demonstrated that an ACS is a good

platform for implementing robotic control algorithms. As
a case study, a robotics control algorithm has been
implemented on reconfigurable hardware. Results
obtained from hardware emulation on the WILDFORCE
platform have demonstrated that the performance of
running the algorithm on reconfigurable hardware is
comparable with that on a general-purpose processor. The
ability of implementing systems with different precision
to customize the design has demonstrated the advantage
of an adaptive computing system. In conjunction with
different voting schemes, fault tolerance techniques have
been used in implementing the algorithm. Fault injection

8

experiments have shown that hardware redundancy is
more suitable for the implemented control system.

7. Acknowledgements
The authors would like to thank Dr. Santiago

Fernandez-Gomez, Philip Shirvani, Subhasish Mitra,
Chao-Wen Tseng, and Siegrid Munda for their useful
feedback and suggestions. We would also like to thank
Mike Butts and Quickturn Design Systems for their
technical support. This work was supported by the
Defense Advanced Research Projects Agency (DARPA)
under Contract No. DABT63-97-C-0024.

References
[Annapolis 99] Annapolis Micro Systems Inc.,

www.annapmicro.com, 1999.
[Bass 97] Bass, J. M., G. Latif-Shabgahi, and S. Bennett,

“Experimental Comparison of Voting Algorithms in Cases
of Disagreement,” Proceedings. 23rd Euromicro
Conference: New Frontiers of Information Technology, pp.
516-23, 1997.

[Craig 89] Craig, J. J., Introduction to Robotics: Mechanics and
Control, Addison-Wesley Publishing Company, 2nd edition,
1989.

[Culbertson 97] Culbertson, W. B., R. Amerson, R. J. Carter, P.
Kuekes, and G. Snider, “Defect Tolerance on the Teramac
Custom Computer, ” Proc. IEEE Symp. FCCM ’97, pp. 116-
123, Apr. 1997.

[Gokhale 98] Gokhale, M. and J. M. Stone, “NAPA C:
Compiling for a Hybrid RISC/FPGA Architecture”, Proc.
IEEE Symp. FCCM’98, Apr. 1998.

[Hamilton 92] Hamilton, D. L., J. K. Bennett, and I. D. Walker,
“Parallel Fault-Tolerant Robot Control,” Proceedings of
SPIE, Vol. 1829, pp. 251-61, 1992.

[Hamilton 94] Hamilton, D. L., M. L. Visinsky, J. K. Bennett, J.
R. Cavallaro, and I. D. Walker, “Fault Tolerant Algorithms
and Architectures for Robotics”, Proceedings of MELECON
’94 Mediterranean Electrotechnical Conference, Vol. 3, pp.
1034-6, 1994.

[Hamilton 96a] Hamilton, D. L., J. R. Cavallaro, and I. D.
Walker, “Risk and Fault Tolerance Analysis for Robotics
and Manufacturing,” Proceedings of 8th Mediterranean
Electrotechnical conference on Industrial Applications in
Power Systems, Computer Science and Telecommunications,
Vol. 1, pp. 250-5, 1996.

[Hamilton 96b] Hamilton, D. L., I. D. Walker, and J. K Bennett,
“Fault Tolerance Versus Performance Metrics for Robot
Systems”, Proceedings of IEEE International Conference on
Robotics and Automation, Vol. 4, pp. 3073-80, 1996.

[Khatib 95] Khatib, O., K. Yokoi, K. Chang, D. Ruspini, R.
Holmberg, A. Casal, and A. Baader, “Force Strategies for
Cooperative Tasks in Multiple Mobile Manipulation
Systems”, Robotics Research 7, The Seventh International
Symposium, G. Giralt and G. Hirzinger, eds., pp. 333-342,
Springer 1996.

[Kim 96] Kim, J. H., J. K. Lee, H. S. Eom, and J. W. Choe, “An
Underwater Mobile Robotic System for Reactor Vessel
Inspection in Nuclear Power Plants,” Proc. of the Sixth

International Symposium on Robotics and Manufacturing,
pp. 351-6, 1996.

[Lach 98] Lach, J., W. H. Mangione-Smith, and M. Potkonjak,
“Efficiently Supporting Fault-Tolerance in FPGAs, ” Proc.
ACM/SIGDA Int’l. Symp. on FPGAs, pp. 105-115, Feb 1998.

[Mitra 99] Mitra, S., N.R. Saxena, and E.J. McCluskey, “Design
Diversity for Redundant Systems,” 29th International
Symposium on Fault-Tolerant Computing (FTCS-29) Fast
Abstracts, Madison, WI, pp. 33-34, June 15-18, 1999.

[Quickturn 99] Quickturn Design Systems (now part of Cadence
Design), www.quickturn.com or www.cadence.com, 1999.

[Saxena 98] Saxena, N. R. and E.J. McCluskey, “Dependable
Adaptive Computing Systems,” IEEE Systems, Man, and
Cybernetics Conf., pp. 2172-2177, Oct. 11-14, 1998.

[Saxena 00] Saxena, N. R., S. Fernandez-Gomez, W.-J. Huang,
S. Mitra, S.-Y. Yu, and E. J. McCluskey, “Dependable
Computing and Online Testing in Adaptive and
Configurable Systems,” IEEE Design and Test, pp. 29-41,
2000.

[Smith 78] Smith, B. J., “A pipeline, Shared Resource MIMD
Computer”, Proc. Intl. Conf. on Parallel Processing, pp. 6-
8, 1978.

[TelSys 99] TSI TelSys Inc., www.tsi-telsys.com, 1999.
[Thayer 76] Thayer, W. J., “Redundant Electrohydraulic

Servoactuators,” Technical Bulletin 127, MOOG INC.
Controls Division, 1976.

[Thorton 64] Thorton, J. E., “Parallel operation in the Control
Data 660”, AFIPS Conf. Proc., Fall Joint Computer Conf.,
Vol. 26, pp. 33-40, 1964.

[Ting 94] Ting, Y., S. Tosunoglu, and B. Fernandez, “Control
Algorithms for Fault-Tolerant Robots,” Proceedings of 1994
IEEE International Conference on Robotics and Automation,
Vol. 2, pp. 910-15, 1994.

[Tosunoglu 93] Tosunoglu, S., “Fault Tolerance for Modular
Robots,” Proceedings of IECON, Vol. 3, pp. 1910-14, 1993.

[Toye 90] Toye, G., Management of Non-homogeneous
Functional Modular Redundancy for Fault Tolerant
Programmable Electro-mechanical Systems, Ph.D. thesis,
Stanford University 1990.

[Toye 93] Toye, G. and L. J. Leifer, “Helenic Fault Tolerance
for Robots,” Computers & Electrical Engineering, Vol. 20,
pp. 479-97, 1993.

[Visinsky 95] Visinsky, M. L., J. R. Cavallaro, and I. D. Walker,
“A Dynamic Fault Tolerance Framework for Remote
Robots”, IEEE Transactions on Robotics and Automation,
Vol. 11, No. 4, pp. 477-490, August 1995.

[Wong 96] Wong, K. K., E. C. Tan, and A. Wahab, “A VLSI
Median Voter for Fault Tolerant Signal Processing
Applications,” 3rd International Conference on Signal
Processing Proceedings, Vol. 2, pp. 1574-7, 1996

[Wu 93] Wu, E. C., J. C. Hwang, and J. T. Chladek, “Fault
Tolerant Joint Development for the Space Shuttle Remote
Manipulator System: Analysis and Experiment,” IEEE
Trans. On Robotics and Manufacturing—Recent Trends in
Research, Education, and Applications, Vol. 9, No. 5, pp.
675-80, 1993.

[Yang 98] Yang, J.-M. and J.-H. Kim, “Fault-Tolerant
Locomotion of the Hexapod Robot,” IEEE Transactions on
Systems, Man, and Cybernetics – Part B: Cybernetics, Vol.
28, No. 1, pp. 109-116, February 1998.

[Xilinx 99] Xilinx, Inc, www.xilinx.com, 1999.

9

Appendix A: Second-Order Linear Control Algorithm

b

m
k Noise

f
f

Figure 9. A second-order linear mechanic system.

Consider a second-order linear mechanic system.
As shown in Fig. 9, an object of mass m is connected to
the wall by a spring with coefficient k. Assume the
frictional force is proportional to the object’s velocity, and
the friction coefficient is b. The position of the object is
described by the variable x. Assume there exists a noise
force fNoise. The origin (x=0) is defined as the resting
position of the object. Then the equation of motion is
(eq 1) fkxxbxmf Noise =+++ &&&

We want the object to move along the desired
trajectory, xd(t). To control the motion of the object, we
want to apply a force f(t) to the object parallel to x axis.
The control law is
(eq 2) +kxx)+bedte+K+Ke+Kxf=m(ipdd &&&& ∫
where

)(dxxe −=
By equating f of equation 1 and 2, and

differentiating both sides, the result is obtained in the
form of a third order differential equation in terms of e:

(eq 3)
m

f
e=+Ke+Ke+Ke Noise

ipd

&
&&&&&&

From equation 3, by assigning different values to
the control gains Kp, Ki, and Kd, we can make e(t)
approach zero quickly. That is, x(t) can approach xd(t)
quickly if we choose proper values for Kp, Ki, and Kd.

A.1 Robot Block
In our design, the behavior of the robot block is

emulated using hardware. We are going to solve x in the
equation of motion (eq 1) to obtain the current position of
the robot.

In a discrete-time system, differentiation and
integration are performed as
(eq 4) ∑ ∑ ∑ ∆=∆∆=∆=∫ tnxttnxttxdttx][)()()(

(eq 5)
t

)ttn(x)tn(x

t

)tt(x)t(x
)t(x

∆
∆−∆−∆=

∆
∆−−=&

t

]n[x]n[x

∆
−−= 1

Then the original equation of motion (eq 1)
becomes

(eq 6)
() 






∆
−+−−+

t

]n[x]n[x]n[x
m[n]f Noise 2

212

]n[f]n[kx
t

]n[x]n[x
b =+







∆
−−+ 1

We can combine the ∆t part into the coefficients.
Therefore,
(eq 7) ()]n[x]n[x]n[x’m]n[f Noise 212 −+−−+

()]n[f]n[kx]n[x]n[x’b =+−−+ 1

where

()

t

b
b

t

m
m

∆
=

∆
=

’

’
2

Solving equation 7 in discrete time,

(eq 8) ()
k’b’m

]n[x’b]n[x]n[x’m
]n[x

++
−+−−−= 1212

k’b’m

]n[f]n[f Noise

++
−

+

The robot block will compute the current
position from the above equation. The force f[n] is the
output of the control block.

A.2 Control Block
In the control block, we are going to compute the

needed force f from the control law:
(eq 2) +kxx)+bedte+K+Ke+Kxf=m(ipdd &&&& ∫

Similar to the robot block, we still use
subtraction and addition to replace differentiation and
integration in our discrete-time system. Therefore, the
equation becomes
(eq 9)])[nx][nx[n]m’(xf[n] ddd 212 −+−−=

() ∑−−]n[e’+K]n[e+K]n[e]n[e’+K ipd 1

()]n[+kx]n[x]n[x’+b 1−−

where

()

tKK
t

K
K

t

b
b

t

m
m

ii

d
d

∆=
∆

=

∆
=

∆
=

’

’

’

’
2

10

In the control block, the inputs are the control
gains Kp, Ki’, and Kd’– whose values are decided by the
user– and the coefficients m’, b’, and k– which describe
the motion of the second-order linear system. In practical,
m, b, and k are obtained by measuring the characteristics
of the robot; in addition, the sampling interval ∆t is
decided by the system. Throughout this paper, we have
used m’=40, b’=10, k’=10, Kp=0.4, Ki’=0.064, and Kd’=0.4.

