
FINITE STATE MACHINE SYNTHESIS WITH
CONCURRENT ERROR DETECTION

Chaohuang Zeng, Nirmal Saxena and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

A new synthesis technique for designing finite state
machines with on-line parity checking is presented. The
output logic and the next-state logic of the finite state ma-
chines are checked independently. By checking parity on
the present state instead of the next state, this technique
allows detection of errors in bistable elements (that were
hitherto not detected by many previous techniques) while
requiring no changes in the original machine specifica-
tions. This paper also examines design choices with re-
spect to parity prediction circuits. Two such examined
choices are the multi-parity-group and the single-parity-
group techniques. A new state encoding technique based
on the JEDI program is developed for the synthesis of the
next-state logic with an additional parity output. Synthesis
results produced by our proposed procedure for the
MCNC'89 FSM benchmark circuits show on average a
25% reduction in literal counts compared to previous tech-
niques.

1. INTRODUCTION

Concurrent error detection (CED) is very important in
highly dependable computing systems. As technology ad-
vances to deep sub-micron levels, circuits are more sus-
ceptible to errors. CED techniques can be used to detect
permanent and transient errors in these circuits. In this
paper, we present a technique for synthesizing a totally
self-checking finite state machine (FSM) with significantly
lower area overhead than that of previous techniques. This
technique can be easily extended to synthesize a general
sequential circuit with concurrent error detection.

A general structure of concurrent error detection is
shown in Fig. 1. The output of a circuit has a certain
property that is monitored by a checker. If an error causes
a violation of the property, the checker gives an error indi-
cation. An easy approach is to duplicate the original circuit
and compare the outputs. However, duplication requires a

significant amount of area overhead and does not provide
protection against common mode failures [Mitra 99].
Several approaches have been taken in the past to design
self-checking combinational and sequential circuits with
lower area overhead than duplication.

Function
Logic

Output
Property
Generation

Checker
Error
Indication

Input

Figure 1. CED Circuit Structure

Concurrent error detection synthesis techniques that
do not require structural constraints during logic optimiza-
tion are reported in [Leveugle 90] [Robinson 92] [ElGui-
baly 95] [Parekhji 95] [Bolchini 95a]. These techniques
provide error detection for the next-state logic of an FSM
by encoding the states with a special property. In [Parek-
hji 95], the next-state logic of the original machine is syn-
thesized as usual after state assignment, and a monitoring
machine is used to monitor the states of the original ma-
chine. The effectiveness of this technique is studied with
respect to the delay fault model. However, for the stuck-at
fault model, the large number of incompatibilities between
the original machine and the monitoring machine could re-
sult in high area overhead [Parekhji 95]. Leveugle, et al .
[Leveugle 90] use the control flow checking technique
[Namjoo 82] to detect illegal state transitions of an FSM
based on path signatures. When the FSM is running, the
next state is compressed by a multiple-input signature
register (MISR). When the machine reaches a certain state
that is designated as a checkpoint, the concurrently calcu-
lated signature is compared with the reference signature.
This technique has uncertain error detection latency and
low fault coverage [Rochet 95]. In the worst case (when
the state transition graph is fully connected), the fault cov-

erage is zero because every path is a legal path. A method
similar to [Leveugle 90] with lower error detection latency
was proposed in [Robinson 92]; however, the fault cover-
age is still low [Rochet 95].

There are design techniques for self-checking circuits
that impose structure constraints during logic optimization
and thereby limit the scope of fault propagation [Sago-
monyan 74][Aksenova 75][Khodadad-Mostashiry 79]
[Dwahan 88][Jha 93][De 94][Bolchini 95b][Touba
97][Das 98]. In [Jha 93] and [Bolchini 95b], the circuit is
synthesized in such a way that all inverters are pushed to
the primary inputs and the final circuit is inverter-free ex-
cept at the primary inputs. The output is encoded with
unidirectional error detection codes, such as the Berger
code and the m-out-of-n code, and monitored by totally
self-checking (TSC) checkers. All internal unidirectional
stuck-at faults except those inside the flip-flops can cause
only unidirectional errors at the output, which are always
detected by TSC checkers. However, these techniques
cannot guarantee to detect errors at the outputs of the flip-
flops (the present state) caused by the unidirectional stuck-
at faults inside the flip-flops because the logic implemen-
tation inside the flip-flops is not inverter-free.

De, et al. [De 94] proposed two techniques for synthe-
sizing combinational multilevel circuits. One technique is
based on the Berger code. The other technique, based on
the parity code, partitions the combinational circuit into
different logic blocks such that the logic sharing inside
each block is maximized, but no logic sharing is allowed
between logic blocks except at the primary input. Each
block has its own parity output and the whole circuit could
have several parity outputs. This multi-parity concept was
proposed by Sogomonyan [Sogomonyan 74].

Touba and McCluskey [Touba 97] also proposed a
technique for synthesizing the combinational multilevel
circuits. This technique partitions the combinational cir-
cuits into multiple groups by adaptively choosing the op-
timal parity codes. For each group of the outputs, an ad-
ditional parity output is generated and added to this group.
Logic sharing is disallowed inside each group but allowed
for different groups. Any single internal fault can cause
only single error at the outputs of the same group. The er-
ror will always be detected because it changes the parity of
the group.

Dwanhan and De Vries [Dwahan 88] proposed a
technique to design a self-checking FSM. This technique
assumes that the machine is completely specified (defined
in Sec. 2) and requires the number of states equal to 2n (n
is the number of state bits). This stringent requirement
makes this technique impractical for a large FSM. For ex-
ample, the circuit sand from the MCNC89 benchmark cir-
cuits has 11 input bits and 9 state bits. If a fully specified
machine is required, it needs 220 specifications, while the
original machine has only 104 specifications. The tech-

nique used in [Aksenova 75] has the same constraint be-
cause it only checks the primary output.

This paper describes an automatic synthesis procedure
to design a self-checking finite state machine based on
parity codes. Instead of using only one parity output
[Dwahan 88], we use two (or more) parity outputs to
monitor the output logic and the next-state logic independ-
ently to avoid the stringent conditions required by Dwa-
han’s technique. By checking the present state instead of
the next state, this new scheme can detect errors in the
bistable elements in addition to the output errors. The
main contributions of this paper are:

1. A novel totally self-checking FSM structure is pre-
sented. This structure does not require any change
in the original machine specification. It also detects
errors in the bistable elements.

2. This paper examines various design choices with
respect to parity prediction circuits. In particular,
two such choices are the multiple-parity-group
technique and the single-parity-group technique
(defined in Sec. 2).

3. A new state encoding technique based on the JEDI
program [Lin 89] is used to synthesize the next-
state logic with an additional parity output.

4. Synthesis results on the MCNC’89 FSM benchmark
circuits are presented.

The paper is organized as follows. Section 2 intro-
duces some terminology and concepts. Section 3 de-
scribes the structure of our self-checking finite state ma-
chine. Section 4 presents three different methods of syn-
thesizing the parity output of the next-state logic and de-
scribes a new state encoding technique. In Sec. 5, the re-
sults generated by our synthesis procedure are presented
and compared with previous techniques. A summary and
conclusions are presented in Sec. 6.

2. PRELIMINARIES

A parity group consists of a subset of the circuit out-
puts and an additional output that equals the parity of these
outputs. If two outputs (including the parity output) be-
long to the same parity group, no logic sharing is allowed
between them. If the circuit is synthesized such that all the
circuit outputs belong to the same parity group, we define
it as the single-parity-group technique. If the outputs are
partitioned into several different parity groups, we define
it as the multiple-parity-group technique.

A finite state machine can be represented by its state
table or its state diagram [McCluskey 86]. Suppose an
FSM has n primary inputs, there could be 2n state transi-
tions from each state. If all these transitions and the out-
puts corresponding to the transitions are specified for each
state, the machine is called a completely specified ma-

chine. If at least one transition or one output correspond-
ing to some transition is not defined, the machine is called
an incompletely specified machine.

In the following, we define a totally self-checking se-
quential circuit because it is very important for a depend-
able computing system.

DEFINITION 1: A sequential circuit is fault secure
if, for every fault from a prescribed fault set, the circuit
never produces an incorrect code space output for normal
inputs [Wakerly 78].

DEFINITION 2: A sequential circuit is self-testing
if, for every fault from a prescribed fault set, the circuit
produces a non-code space output for at least one input re-
ceived in normal operation [Wakerly 78].

DEFINITION 3: A sequential circuit is totally self-
checking (TSC) if it is fault secure and self-testing.

In this paper, sequential circuits are synthesized to be
TSC and then checked by TSC checkers [Khakbaz 84]
[Hughes 84].

3. TOTALLY SELF-CHECKING FINITE STATE
MACHINE

The general form of an FSM is shown in Fig. 2. The
machine consists of output logic that produces the primary
output, next-state logic that produces the next state, and
bistable elements (such as flip-flops or latches). In this
section, we explain the single-parity-group technique and
the multiple-parity-group technique in more detail. Then
we present our technique to design a TSC FSM.

3.1 Single-parity-group technique
This technique has been used to synthesize combina-

tional circuits [De 94][Khodadad-Mostashiry 79] and se-
quential circuits [Dwahan 88][Devadas 89]. Since all of
the outputs belong to the same parity group, each output is
synthesized independently and thus there is no logic shar-
ing between any pair of the outputs. Consequently, faults
inside each output block (Fig. 3) can cause at most one
output error. Figure 3 illustrates the logic implementation
of the primary output and the parity output. A TSC parity

checker [Khakbaz 84] is used to detect output error con-
currently.

Output Logic

Next-State Logic

 Bistable
Elements

Input Primary
Output

Next State

Figure 2. Diagram of a Finite State Machine

3.2 Multiple-parity-group technique
The single-parity-group technique allows no logic

sharing among different outputs, resulting in large area
overhead for some circuits. The multiple-parity-group
technique was used [De 94][Touba 97] to allow logic
sharing among some outputs. It partitions the primary
outputs into different parity groups. Logic sharing is al-
lowed only among outputs that are in different parity
groups. The outputs within the same parity group are
checked by a TSC parity checker. The outputs of the par-
ity checkers are checked by a TSC two-rail checker
[Hughes 84], which gives the final error indication (Fig.
4). This technique was used to synthesize combinational
circuits.

There is an area trade-off in determining the number
of parity groups. While more parity groups allow more
logic sharing, they also increase the number of parity out-
puts. Finding an optimum number of parity groups is dif-
ficult due to the heuristic nature of the logic optimization
algorithms. Nur Touba [Touba 97] developed a heuristic
algorithm to find a partitioning of the primary outputs into
several parity groups, where logic sharing between differ-
ent parity groups are allowed. In this paper, we extend
Touba’s technique to synthesize an FSM and call it the
multiple-parity-group technique.

Figure 3. Single-parity-group Technique for
Combinational Circuit

Parity
Group

Input TSC
Parity

Checker

TSC
Parity

Checker

TSC
Parity

Checker

TSC
Two-rail
Checker

Output

Parity
Group

Parity
Group

Logic Sharing

Figure 4. Multiple-parity-group Technique for
Combinational Circuit

3.3 Totally Self-checking FSM
The new totally self-checking structure of an FSM is

shown in Fig. 5. The output logic and the next-state logic
are checked independently by TSC checkers (Fig. 5a).
The outputs of the TSC checkers are checked by a two-rail
TSC checker that gives the final error indication (Fig. 5b).
The output logic of the FSM can be synthesized using the
single-parity-group technique or the multiple-parity-group
technique, depending on the circuit size. If it is the single-
parity-group technique, the corresponding checker (TSC
1) is a TSC parity checker. If it is the multi-parity-group
technique, the checker is the same as that shown in Fig. 4,
consisting of TSC parity checkers followed by a two-rail
checker. For the next-state logic, we always use the sin-
gle-parity-group technique because the next-state logic
usually does not have much logic sharing. It has much
less area overhead than the multiple-parity-group tech-
nique based on our experimental results described in Sec.
5. The corresponding checker is a TSC parity checker,
which is placed after the outputs of flip-flops to check the

parity of the present state. It should be noted that one ad-
ditional flip-flop is needed to hold the value of the parity
output of the next-state logic. However, the parity bit is
not used as an input of the FSM.

Input

FFs
TSC

 2

Parity

TSC
1

Single / Multiple
Parity Group(s)

Primary
Output

Parity

FF

Single Parity
Group

Next State

(a)

TSC 1

TSC2

TSC
Two-rail
Checker

Error
Indication

 (b)

Figure 5. Self-checking Finite State Machine

In this scheme, only one additional flip-flop is re-
quired because the next-state logic has only one parity bit.
In contrast, duplication would require as many additional
flip-flops as the original circuit and a bigger checker cir-
cuit. Because the output logic and the next-state logic be-
long to different parity groups, logic sharing between them
is allowed to further reduce the area overhead.
THEOREM: An FSM is totally self-checking with re-
spect to single stuck-at faults if it is synthesized as de-
scribed above (Fig. 5) and is irredundant.
PROOF: (1) the circuit is fault-secure. Suppose there is a
stuck-at fault inside the output logic or the next-state logic.
This fault could cause errors in several outputs. However,
These erroneous outputs must belong to distinct parity
groups because there is no logic sharing inside the same
parity group. Therefore, if the error occurs in some or
several outputs, it must change the parity of the groups to
which these outputs belongs. If the parity groups are in
the output logic, the error can be detected by TSC checker
1 within the same clock cycle. If the parity group is in the

TSC
Parity

Checker

Input Output
Logic

Logic

Logic

Logic
Parity

next-state logic, the logic values of the next-state outputs
and the corresponding parity output will be held by the
flip-flops. In the next clock cycle, the error will be de-
tected by TSC checker 2. Consider a stuck-at fault in one
of the flip-flops. If the fault causes an error in the output
of the flip-flop, the parity of the present state is changed
and the error is then detected by TSC checker 2. If at least
one of the TSC checkers in Fig. 5a detects the errors, the
two-rail checker gives the final error indication (Fig. 5b).

(2) The circuit is self-testing. For any single stuck-at
fault, there exists a pair of the primary inputs and the pre-
sent state to activate the fault and produce an error in the
output because the circuit is irredundant. One of the fun-
damental assumptions of the TSC circuits [Smith 78] is
that faults occur one at a time and between any two faults
a sufficient time elapses so that all the specified inputs are
applied to the circuit. Based on this assumption, the fault
can always manifest itself as output error(s), which are
detected by the TSC checkers shown in Fig. 5.

The following is a simple mod-3 counter used to il-
lustrate the new synthesis technique. The state table of the
counter is shown in Table 1. The state is encoded with the
binary vector in the parenthesis (Table 1). For example,
S0 is encoded with 00. The circuit synthesized by our
procedure is shown in Fig. 6. This circuit has two parity
groups, one for the next-state logic and another for the
output logic. The parity for each group is odd. There is
logic sharing (the gate Y1 in Fig. 6) between the two par-
ity groups but no sharing in the same parity group.

Many previous techniques [Jha 93][Bolchini 95b]
check the next state instead of the present state. Conse-
quently, these techniques cannot guarantee to detect errors
in the flip-flops because the incorrect present state could
result in an incorrect codeword output. We illustrate this
problem using the above example.

Table 1. State Table of the Counter

Input Present state Next state
Y1 Y2

Output
Z1 Z2

- S0 (00) S1 00

- S1 (01) S2 01

- S2 (11) S0 10

Suppose the present state is S0 (encoded with 00) and
the output of the flip-flop (FF2) is stuck at 0. The next
state will be S1 (encoded with 01). After one clock cycle,
the present state will unfortunately still stay at S0 due to
the stuck-at fault. Therefore, the machine always stays at
state S0. If the checker is used to monitor the next state,
the error can not be detected. Dwahan’s technique [Dwa-
han 88] circumvents this problem by requiring the FSM to
be a completely specified machine. This solution becomes
impractical when the machine becomes large because the

actual machine specifications are much smaller than the
complete specifications.

Figure 6. Self-checking Counter Circuit

To overcome this problem, our technique checks the
present state directly so that the error propagation from the
present state to the output is not necessary. The machine
can be synthesized without any change to the original
specifications.

4. PARITY OUTPUT GENERATION FOR THE
NEXT STATE

The three basic steps in synthesizing an FSM are: (1)
minimizing the number of machine states; (2) encoding the
state symbols with binary vectors; and (3) optimizing the
logic implementation. In an FSM, the next-state logic dif-
fers from the output logic in that the states are represented
by symbols. Therefore, for the next-state logic, the parity
output can be added at three different stages in the above
synthesis flow:

1. During state assignment (at step 2). At this stage,
each state is first encoded with binary vector of even
(odd) parity and then one bit in the binary vector is
designated as a parity output. This method tries to
find such an encoding that will optimize not only the
next state but also the parity output.
2. After state assignment but before logic optimiza-
tion (between step 2 and step 3). At this stage, states
are already encoded with binary vectors. Thus, the
parity output can be calculated straightforwardly by
taking bit-wise exclusive-or operation on the binary
vector.

TSC 1

TSC 2

Y1

Y2

PARITY

PARITY

Z1
Z2

OUTPUT
LOGIC

NEXT
STATE
LOGIC

FF1

FF2

FF

3. During logic optimization (at step 3). The next-
state logic is optimized first. Then the parity output is
inserted and optimized.
In the third option, the parity output is optimized after

the next-state logic. Therefore, the parity output takes less
advantage of the input and output don’t care sets than the
next state during the process of the logic optimization.
Our results also indicate that the third option has a higher
area overhead than the first two.

In the rest of this section, we discuss a new state en-
coding technique that extends previous work [Lin 89].
The objective of this encoding technique is to reduce the
area overhead of the self-checking FSM.

We first describe briefly the normal state encoding
technique implemented in the JEDI program [Lin 89].
State assignment can be performed for either the present
state (present-state encoding) or the next state (next-state
encoding). In JEDI program, there are two cost functions
associated with them respectively. The JEDI program as-
signs binary vectors to the state symbols based on minimi-
zation of either one of the cost functions, depending on the
user’s choice. The default option is to minimize the cost
function for the next-state encoding.

The new state encoding is performed as follows.
First, the states are encoded with odd-parity binary

vectors by modifying the JEDI program. In the example
shown in the previous section, states S0, S1, and S2 are
encoded with 001, 010, and 111, respectively. We modify
the program to encode the states with the binary vectors of
odd parity such that the cost function for the next-state en-
coding is minimized. This step is to optimize both the
next state and the parity output because they are indistin-
guishable at this point.

Second, one bit in the binary vector is designated as
the parity bit. Every bit in the binary vector can poten-
tially be a parity bit. Because the parity bit of the present
state is not an input to the FSM, we want to choose such a
bit in the binary vector that the area of the FSM is mini-
mal. Heuristically, we choose the parity bit in such a way
that, after removing it from the binary vector, the cost
function for the present-state encoding is minimal, which
means that this bit contributes less logic sharing than the
other bits. For example, bit 3 is designated as the parity
bit in the above example.

Third, the designated parity bit is removed from the
binary vector and the resulting binary vector is assigned to
the state. For example, after the third bit is removed,
states S0, S1, and S2 are then encoded with 00, 01, and 11,
respectively. The new state assignment after the bit re-
moval is valid because each state symbol is still encoded
with a unique binary vector. This step is necessary be-
cause the present state excludes the parity bit in order to
reduce the area overhead (Fig. 5).

5. EXPERIMENTAL RESULTS

The self-checking FSM synthesis technique pro-
posed in this paper has been implemented by modifying
SIS 1.2 [Sentovich 92]. The state assignment program
(JEDI) is modified to add the capability of the special state
encoding described in Sec. 4. The logic optimization
technique that has structure constraints on the circuit (such
as no logic sharing among a parity group) [Touba 97] is
extended to sequential circuits. The MCNC89 FSM
benchmark circuits are synthesized by our procedure to be
totally self-checking circuits.

Table 2 compares the literal counts of two techniques:
the single-parity-group technique and the multiple-parity-
group technique. This comparison is for both the output
logic and the next-state logic (the parity is added during
the state assignment as described in Sec. 4). The literal
counts include those of the TSC checkers. For the output
logic, the single-parity-group technique is generally better
for circuits with a small number of primary outputs and
primary inputs (<10). However, the multiple-parity-group
technique is generally better for circuits with a large num-
ber of primary outputs (>15), such as ex1 and scf. There-
fore, in our synthesis procedure for a finite state machine,
we select the multi-parity-group technique or the single-
parity technique depending on whether the number of the
primary outputs is larger than 15 or not. If the synthesis
time is not a critical factor, we can synthesize the machine
with these two different techniques and then choose the
best result. For the next-state logic, the single-parity-
group technique has about 15% percent lower literal
counts than the multiple-parity-group technique. The sin-
gle-parity-group technique also has fewer flip-flops than
the multiple-parity-group technique. Therefore, we use
the single-parity-group technique to synthesize the next-
state logic of FSM.

Table 3 compares the literal counts of the next-state
logic generated by three different methods described in
Section 4. The literal counts of the TSC checker are not
included because they are the same for these three meth-
ods. The third column shows the results when the parity
output is added during the logic optimization. The fourth
column shows the results when the parity output is added
after the state assignment but before logic optimization.
The last column shows the results when the parity is added
during the state assignment by the new state encoding
technique. The last two columns have generally better re-
sults than the third column because the parity output is
generated before logic optimization, taking greater advan-
tage of the input and output don’t care sets. The new state
encoding technique gives better results in most of the
benchmark circuits. However, the normal state encoding

technique occasionally has better results because of the
heuristic nature of state assignment and logic optimization.

Table 2. Two Different Techniques, Literal Counts Including TSC checkers

Output Logic of the FSM (l.c.) Next-state Logic of the FSM (l.c.)Benchmark

Circuits Inputs Outputs
Original Multiple Single Original Multiple Single

dk14 3 5 72 161 141 53 114 106

dk16 2 3 54 102 102 195 434 324

ex1 9 19 155 429 521 133 283 253

ex2 2 2 15 38 19 59 154 114

ex4 6 9 41 108 100 37 80 68

ex6 5 8 74 182 191 48 87 87

kirkman 12 6 146 350 619 49 117 116

opus 5 6 51 141 102 42 103 93

planet 7 19 310 772 744 242 561 397

pma 8 8 89 188 160 143 334 275

scf 27 56 292 812 1003 515 831 754

sse 7 7 58 145 150 87 160 139

styr 9 10 252 560 528 313 640 482

tma 7 6 93 234 201 108 258 222

Table 4 shows the results for four different imple-
mentations: duplicate-and-compare, [Das 98], [Jha 93],
and the proposed technique. “NA” in the table means the
data is not available. It should be noted that the techniques
[Jha 93] target the unidirectional fault model. The pro-
posed technique assumes the single stuck-at model. The
comparison to [Jha 93] is valid only when the single stuck-
at fault model is adequate for a given circuit. In fact, the
proposed technique can also detect multiple faults inside
any single output block shown in Fig. 3. Moreover, com-
pared to previous techniques our technique has on average
25% lower literal counts. In addition, our approach has
fewer flip-flops than the other three techniques.

Table 3. Different Parity-bit Generation Stages
 (Literal Counts, Not Including the TSC Checkers)

Next-state logic of FSM

circuits Original During logic
optimization

After state
assignment

During
state

Assign-
ment

dk14 53 102 93 97

dk16 195 312 270 295

ex1 133 241 184 180

ex2 59 106 127 101

ex4 37 60 64 56

ex6 48 83 111 73

ex7 13 26 25 21

kirkman 49 104 110 74

mark1 52 72 72 59

opus 42 85 83 61

planet 242 381 412 368

pma 143 263 267 236

s27 24 61 47 50

sand 325 475 450 476

scf 515 734 696 708

sse 87 131 121 115

styr 313 470 505 478

sbk 170 365 435 376

tma 108 210 168 147

7. SUMMARY AND CONCLUSIONS

This paper presents a novel self-checking FSM design
and synthesis technique. This technique can detect any
internal single stuck-at fault with at most one clock cycle
latency. By checking the present state instead of the next
state, this new scheme can detect any single error in the
bistable elements without changing the machine specifica-
tions.

Specific to the next-state logic, the parity output can
be added at three different stages in the synthesis flow: 1)
during logic optimization, 2) after state assignment but be-
fore logic optimization, and 3) during state assignment.
We present the results for these three different cases. The
last case with the new special state encoding generally
produces the better synthesis results.

The single-parity-group technique is compared with
the multiple-parity-group technique. For the next-state
logic, the single-parity-group technique is much better

than the multiple-parity-group technique because there is
not much logic sharing in the next-state logic. For the
output logic, the single-parity-group technique usually has
better results for circuits with a small number of outputs,
while the multiple-parity-group technique is in general
better for circuits with a large number of outputs. Our
synthesis results show that our self-checking FSM has sig-
nificantly lower literal counts than the previous techniques
for most of the MCNC89 benchmark circuits.

Table 4. Proposed Technique versus Previ-
ous Techniques (Literal Counts)

Cir-
cuits

Original Duplica-
tion

[Das 98] [Jha 93] Proposed
Technique

cse 183 402 NA 446 377

dk14 101 226 281 316 214

dk15 69 158 196 230 137

dk16 239 502 559 445 417

dk17 57 130 NA NA 114

dk27 24 60 NA NA 53

dk512 56 132 NA NA 106

ex1 221 530 NA 777 682

ex2 74 164 NA NA 133

ex3 25 62 NA NA 51

ex4 70 184 NA 310 159

ex5 12 32 NA NA 28

ex6 78 192 NA 298 248

ex7 22 52 NA NA 42

kirkman 186 408 NA 588 466

mark1 80 232 NA 407 190

mc 23 66 NA 135 57

opus 77 186 NA 227 166

planet 213 1098 1109 1016 1010

pma 237 470 NA NA 434

s27 36 80 NA NA 74

sand 476 1000 NA 818 989

scf 763 1770 NA 1876 1185

sse 120 286 NA 344 283

styr 468 988 1249 789 1066

NA: Not Available

ACKNOWLEDGEMENT

The authors would like to thank Professor Nur Touba
for his valuable comments and Dr. Santiago Fernandez-
Gomez for his help in implementation. This work was
supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. DABT63-97-c-
0024.

REFERENCES

[Aksenova 75] Aksenova, G.P. and Sogomonyan, E.S.,
"Design of Self-checking Built-in Check Circuits for
Automata with Memory", Automation and Remote
Control, Vol. 36, pp. 1169-77, July 1975.

[Bolchini 95a] Bolchini, C. et al. "A State Encoding for
Self-checking Finite State Machines" Proceedings of
VLSI95, pp711-16, Aug. 1995.

[Bolchini 95b] Bolchini, C. and Sciuto, D., "An Out-
put/state Encoding for Self-checking Finite State Ma-
chine," Proceedings of International Symposium on
Circuits and Systems, Vol.3, pp. 2136-9, May 1995.

[Das 98] Das, D. and Touba, N.A., “Synthesis of Circuits
with Low-Cost Concurrent Error Detection Based on
Bose-lin Codes”, IEEE VLSI Test Symposium, pp. 309-
315, Apr. 98.

[Davadas 89] Devadas, S., Ma, H.-K.T., and Newton,
A.R., “A Synthesis and Optimization Procedure for
Fully and Easily Testable Sequential Machines”, IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol.8, no.10, pp. 1100-7, Oct. 1989.

[De 94] De, K., Natarajan C., Nair D, and Banerjee, P.,
"RSYN: A System for Automated Synthesis of Reli-
able Multilevel Circuits," IEEE Trans. Very Large
Scale Integration, Vol. 2, pp. 186-195, Jun. 1994.

[Dhawan 88] Dhawan, S. and De Vries, R.C., "Design of
Self-checking Sequential Machines," IEEE Trans.
Computers, Vol. 37, pp. 1280-1284, Oct. 1988.

[Hughes 84] Hughes, J.L.A., E.J.McCluskey, and D.J. Lu,
"Design of Totally Self-checking Comparators with an
Arbitrary Number of Inputs", IEEE Trans. Computers,
pp 546-50, Jun.1984.

[Jha 93] Jha, N.K. and Wang, S.J., "Design and Synthesis
of Self-checking VLSI Circuits," IEEE Trans. Com-
puter-Aided Design of Integrated Circuits and Systems,
Vol. 12, pp. 878-887, June 1993.

[Khakbaz 82] Khakbaz, J., “Self-testing Embedded Parity
Trees”, International Symposium on Fault-Tolerant
Computing, pp109-16, June 1982.

[Khodadad-Mostashiry 79] Khodadad-Mostashiry, B.,
"Parity Prediction in Combinational Circuits", Interna-
tional Symposium on Fault-Tolerant Computing, pp
185-8, Jun. 1979.

[Leveugle 90] Leveugle, R. and Saucier, G., “Optimized
Synthesis of Concurrently Checked Controller,” IEEE
Trans. Computers, Vol. 39, pp. 419-425, Apr.1990.

[Lin 89] Lin, B. and Newton, A.R., “Synthesis of Multiple
Level Logic from Symbolic High-level Description
Language,” Proceedings of the International Confer-
ence on VLSI, pp. 414-417, Aug. 1989.

[McCluskey 86] E.J. McCluskey, “Logic Design Princi-
ples”, Prentice Hall, 1986.

[Mitra 99] Mitra, S., Saxena, N. and McCluskey, E.J., “A
Design Diversity Metric and Reliability Analysis for
Redundant Systems”, International Test Conference, to
appear in Sept. 1999.

[Namjoo 82] Namjoo, M., "Techniques for Concurrent
Testing of VLSI Processor Operation" International
Test Conference, pp461-8, Nov. 1982.

[Parekhji 95] Parekhji, R.A., Venkatesh, G. and Sherlekar,
S.D., "Concurrent Error Detection using Monitoring
Machines," IEEE design & Test of Computers, Vol. 12,
pp.24-32, Fall 1995.

[Robinson 92] Robinson, S.H. and Shen, J.P., "Direct
Methods for Synthesis of Self-monitoring State Ma-
chines," International Symposium on Fault-Tolerant
Computing, pp306-315, Jul. 1992.

[Rochet 95] Rochet, R., Leveugle, R. and Saucier, G., "Ef-
ficiency Comparison of Signature Monitoring Schemes
for FSMs," proceedings of VLSI95, pp705-10, Aug.
1995.

[Sentovich 92] Ellen M. Sentovich, et. al.,”SIS: A System
for Sequential Circuits Synthesis,” Technical Report
No. UCB/ERL M92/41, Department of EECS, U.C.
Berkeley, May 1992.

[Smith 78] Smith, J.E. and Metze, G, “Strongly Fault Se-
cure Logic Network,” IEEE Trans. Computers, Vol. C-
27, No. 6, pp. 491-499, Jun. 1978.

[Sogomonyan 74] Sogomonyan, E.S., "Design of Built-in
Self-checking Monitoring Circuits for Combinational
Devices", Automation and Remote Control, Vol. 35,
pp. 280-9, Feb. 1974.

[Touba 97] Touba, N.A. and McCluskey, E.J., “Logic
Synthesis of Multilevel Circuits with Concurrent Error
Detection”, IEEE Trans. Computer-Aided Design of
Integrated Circuits and System, Vol. 16, pp. 783-789,
Jul. 1997.

[Wakerly 78] Wakerly, J., “Error Detecting Codes, Self-
checking Circuits and Applications”, North Holland,
1978.

