Failing Frequency Signature

Jaekwang (Jake) Lee
Center for Reliable Computing (CRC)
Department of Electrical Engineering
Stanford University

Oct. 15, 2007

Outline

- Introduction
- Failing Frequency Signature vs. Error Sequence
- Test Result
- Conclusion

Definitions

- Frequency Sweep
 - Test application at various clock frequencies (low to high)
- Failing Frequency
 - Minimum frequency with erroneous output
- Failing Frequency Signature
 - Collection of failing frequency of each pattern in the pattern set

Example

- Failing Frequency Signature (3 patterns)
- With delay defect

Example

- Failing Frequency Signature (3 patterns)
- Good device (reference)

Failing Frequency Signature

- Obtaining Failing Frequency Signature
 - Failing frequency of each pattern using frequency sweep
- Analyzing Failing Frequency Signature
 - Frequency version of IDDQ signature
 - Exploiting IDDQ researches
 - Current Signature [Gattiker 96]
 - Delta-IDDQ [Thibeault 97]
 - Current ratios [Maxwell 99]
Failing Frequency Signature

- Objectives
 - Detecting small delay defects
 - Better than Error Sequence Analysis
 - Better resolution
 - Reduced test time
 - Reduced storage requirement

- Purpose
 - NTF analysis
 - Characterization test

Outline

- Introduction
- Failing Frequency Signature vs. Error Sequence
- Test Result
- Conclusion

Review: Error Sequence Analysis

- Error Sequence
 - Frequency sweep test with a pattern set
 - Sequence of erroneous output according to its failing frequency

- Error Sequence Analysis
 - Error sequence comparison with good chip's sequence

Review: Error Sequence

- Frequency Sweep (100MHz to 120MHz)
 - Test frequency: 100MHz
 - Error A (P2, O2) at 110MHz
 - Error B (P1, O3) at 120MHz
 - Error C (P3, O4) at 120MHz

- Error Sequence
 - Frequency Sweep (100MHz to 120MHz)
 - Test frequency: 120MHz
 - Error A (P2, O2) at 110MHz
Review : Example

- **Small delay fault**
 - At block A (0.2ns)

- **Transition fault**
 - Propagation path
 - A? B
 - With fault
 - A? B : 0.8ns < 1.0ns (Not detected)
 - A? C : 1.1ns > 1.0ns (Undetected error)

Error Sequence Analysis

- Propagation path
 - A? B (0.8ns ? 0.8ns)
 - D? E (0.7ns)

- Without fault
 - A? B < D? E

- With fault
 - A? B > D? E
 - Different sequence

Failing Frequency Signature vs. Error Sequence

- **Same**
 - Using frequency sweep
 - Robust to lot-to-lot, wafer-to-wafer process variation

- **Different**
 - Pattern application
 - Single pattern vs. pattern set
 - Issues
 - Test time
 - Resolution
 - Storage requirement

Robust to Global Process Variation

- **Process variation**
 - Within die << Die-to-Die << Wafer-to-Wafer
 - Retaining signature

Issue : Test time

- **Finding Failing Frequency (or Period)**
 - Binary search method

- **Example**
 - Range : 12ns, Resolution < 0.1ns
 - Number of different freq. application = 7

- Test time compared to transition test
 - Expectation : around 20 times
 - Real application : Much greater!! (50~60 times)
Issue : Test Time & Resolution

- ELF18 transition fault test pattern
 - Longest sensitized path : 9.27ns
 - Shortest sensitized path : 2.70ns
- Desired resolution : < 0.5ns
 - Error sequence analysis
 - \((9.27 - 2.70) / 0.5 = 13.14 \rightarrow 14\)
 - Failing frequency signature
 - \(\log_2(9.27 - 2.70) / 0.5 = 3.72 \rightarrow 4\)

Issue : Storage Requirement

- Less than error sequence analysis
 - 3 pattern set example

Outline

- Introduction
- Failing Frequency Signature vs. Error Sequence
- Test Result
- Conclusion

ELF18 Test

- Number of Samples
 - 36 cores
- Transition test set
 - Number of patterns : 1417
 - Fault coverage : 97%
- Clock period
 - Range : 2ns ~ 14ns
 - Resolution : 0.1ns

Frequency Signatures

- Good Chip
- Bad Chip
Frequency Signatures

- **Suspect**

Outline

- **Introduction**
- **Failing Frequency Signature vs. Error Sequence**
- **Test Result**
- **Conclusion**

Conclusion

- **Failing Frequency Signature Analysis**
 - Small delay flaw detection
- **Advantages over Error Sequence Analysis**
 - Better resolution
 - Less storage requirement
 - Exploiting IDDQ analysis method
- **Issue**
 - Test time: much longer than expected time
- **Purpose**
 - NTF analysis / characterization test

References