Digital IC Testing for Art Historians and Test Experts

E.J. McCluskey
October 11, 2004

Acknowledgements

- Mike Purtell, Sassan Raissi, Phil Nigh
- THE RATS

Outline

- Production Testing
- Basic Concerns
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence - the ELF Experiments
- Issues
 - More Myths
- The Future

Conclusions

- Affordable, adequate production testing
 - Novel access circuitry
 - Better, proven test metrics
 - Lucky accident ?
 - OR
 - FUNDAMENTAL RESEARCH RESULT ?
- Research funding can make it happen!
Production Testing

- Every chip or a sample of the chips tested
 - Defective chips discarded

- Test quality
 - How many defective chips are passed

AH question
What if test procedure is faulty?

Production Test

- Input signals applied
 - Correctness of response verified, or
 - Speed of correct operation determined

- Test Conditions controlled
 - Temperature
 - Speed
 - Voltage value

Other Test Procedures

- Quality assurance test
 - Very thorough test of chip sample

- Diagnostic test
 - Test to determine failure cause

- Reliability test
 - Test to estimate useful lifetime

- Weak parts test
 - Test to identify chips with very short lifetimes

Outline

- Production Testing
 - Basic Concerns
 - Quality, Test Cost, Access

- Defect Effects (Modes) and Failure Causes

- Common Wisdom - Myths
 - Evidence – the ELF Experiments

- Issues
 - More Myths
 - The Future

Conclusions

The Basic Concerns

- Quality
 - Too low,
 - Hard to measure

- Testing cost
 - Too high,
 - Increasing fraction of chip manufacturing cost

Cost of Test

Gelsinger, IEEE Design & Test, Jan. 2000, CTO, Intel
The Basic Concerns - Causes

- Low quality – test not thorough enough
 - Inadequate access
- Too expensive – test too long
 - Inadequate access

Access

1960s
- 7400 SSI IC
 - 12 logic pins (I/Os), 4 gates
 - 0.33 gate/pin ratio

2000s
- nVIDIA Graphics Processor
 - ≈ 400 logic pins (I/Os), 4 million gates
 - ≈ 10 thousand gates/pin ratio

7400 SSI IC

logic diagram

package

nVIDIA Graphics Processor

Inadequate Access

- Gate to Pin ratio
 - Steady growth
- Solutions?
 - Increase access
 - Test points – observability, controllability
 - Scan – full vs. partial
 - “Scanout”
 - SOC partitions and wrappers
 - BIST

Can’t keep up!

Outline

- Production Testing
 - Basic Concerns
 - Quality, Test Cost, Access
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence – the ELF Experiments
- Issues
 - More Myths
- The Future

Conclusions
Defect Effects (Modes)

- Defective chip aberrant behavior
 - Incorrect output signal values
 - Input signal changes slow to reach output
 - Invalid output signal values
- Observable on tester or test fixture

THAT'S ALL!

Failure Causes

- Failure causes
 - Defective chip structural anomaly
 - Extra or missing connections
 - Connection resistance incorrect

Outline

- Production Testing
 - Basic Concerns
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence -- the ELF Experiments
- Issues
 - More Myths
- The Future

Common Wisdom - Myth number 1

- Myth number 1
 - Each new technology has
 - New, mysterious failure modes
 - Need new, more complex fault models

New failure modes will require new failure models, Wally Rhines, Mentor Graphics CEO, Keynote speech 2003

Common Wisdom - Myth number 1

- The truth
 - Failure effects (modes) aren't changing
 - Failure causes may change
 - Population of defect types may change
 - Sensitivity to test conditions may change
- Needed
 - Better metrics, more effective test conditions
- Fault models
 - Very important for DIAGNOSIS
 - Not the issue for production test
- Test Metrics
 - Very important for PRODUCTION TEST

Outline

- Production Testing
 - Basic Concerns
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence -- the ELF Experiments
 - Defect Classification
- Issues
 - More Myths
 - The Future

Conclusions
Evidence – the ELF Experiments

- Murphy 1991 Hughes Aircraft Custom Chip
- ELF 35 1996 LSI Logic Custom Chip
- ELF 18 2002 Philips Test Chip
- NV 18 2004 nVidia Graphics Processor

Murphy Chip

- LSI Logic 150K CMOS Gate Array
- 25K Gate design
- $L_{eff} = 0.7 \, \mu m$
- Nominal VDD = 5v
- 5 Combinational Cores
 - 4 Copies of each core
- Support DFT circuitry

ELF35 Chip

- LSI Logic G10P technology
- $L_{eff} = 0.35 \, \mu m$
- Nominal VDD = 3.3v
- 6 Cores
 - 4 Combinational Cores
 - 1 translator, 3 datapath
 - 2 Sequential (2901’s)
 - full scan

MURPHY Time Line

- 1991: Project started
- 1993: Design completed
- 1995: Wafer sort results, ITC
- 1997: Package chips received
- 1998: Package test results, VTS
- 2000: Burn-in results, ITC

ELF35 Time Line

- Jan. 1996: Project started
- Nov. 1996: Logic Design Completed
- Apr. 1997: Tape-out
- Jun. 1997: First silicon
- 1998: Test Patterns Collected
- 1999: Test Program Debug
- Nov. 2000: 3,000+ chips received
- Aug. 2001: 6,000+ chips received
- Mar. 2002: All chips tested
- Jun. 2003: Interesting chips studied

ELF18

- 0.18 \, \mu m technology
- 12 Million transistors
- 6 interconnect layers
- Area 30 mm²
- 80 IO pins
- 6 DSP cores
nVIDIA Graphics Processor

- 0.14 μm technology
- 34 Million transistors
- 7 interconnect layers
- Area 8.49mm*8.49mm
- 403 IO signal pins

Outline

- Production Testing
 - Basic Concerns
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence - the ELF Experiments
 - Defect Classification
- Issues
 - More Myths
- The Future

Conclusions

Defect Classification

Combinational defect
 - Response to pattern n
 - Independent of pattern n-1
Timming dependent defect
 - Response to patterns
 - Dependent on pattern speed
Sequence dependent defect
 - Response to patterns
 - Dependent on pattern order

Defect Classification

Single stuck-at faults
 - Tester output = SSF fault simulation output?
 - Perfect match
 - Defect = SS@
 - Test set used
 - 100% SSF test set

Defect Classification

TIC defect
 - Timing independent combinational defect
 - Reorder patterns ⇒ no change in results
 - Change test speed ⇒ no change in results
Sequence Dependent Defects
- Sequence dependent defect
 - Single stuck defect: NO
 - Multiple stuck defect: NO
 - Non-feedback bridging defect: NO
 - Stuck open: possibly
 - Feedback bridging: possibly
 - Delay defect: possibly

Timing Dependent Defects
- Same test set
 - Defect detected at one speed
 - Escapes at another speed
- Possible causes
 - Resistive opens
 - Process variation

Defect Classification

Outline
- Production Testing
 - Basic Concerns
- Defect Effects (Modes) and Failure Causes
 - Common Wisdom - Myths
 - Evidence - the ELF Experiments
 - Defect Classification
 - Issues
 - More Myths
 - The Future
- Conclusions

Issues
- 1. Testing vs. Diagnosis
- 2. Which input patterns?
- 3. Metrics vs. Models

Issue 1: Testing vs. Diagnosis
- Testing
 - Identify broken CHIPS
- Diagnosis
 - Identify DEFECT in broken chip
 - Done on only a sample

Focus here is on Testing
Testing Techniques

- **Functional test**
 - Mimic chip operation in product
 - Fixture
 - ATE (chip tester) or
 - Product sockets

- **Structural test**
 - ATE (chip tester)
 - Verify chip structure

Issue 2: which input patterns?

- **Functional test**
 - Patterns from chip operation in product
 - Same as in chip application
 - Too many patterns
 - Not a thorough test

 - Design verification patterns
 - Not a thorough test
 - Patterns must be augmented
 - Not automated, very expensive

Issue 2: which input patterns

- **Structural test**
 - Verify chip structure
 - Too many possible input patterns
 - How to choose?
 - Metric needed

Issue 3 - Models vs. Metrics

- **Model**
 - Representation at logic, circuit or physical level
 - Effect of defect on chip behavior
 - Vital for diagnosis

- **Metric**
 - Measure of test completeness
 - Used
 - To guide test set generation
 - To assess test set completeness

Metric most important for testing

Fault Models

- Single stuck-at fault
- Bridging fault – wired logic
- Bridging fault – dominant net
- Delay fault
- Stuck-open fault

Test Metric

- Specify procedure to:
 1. Guide selection of input patterns (test set) to:
 - activate aberrant behavior, and
 - sensitize incorrect signal to output (optional)
 2. Estimate completeness of test set
 - in achieving these goals
 3. Specify test conditions (optional)
Test metrics

- Toggle test – static, dynamic (Single or Double)
- Single stuck fault
- Transition test
- Taro
- N-Detect test
- Gate exhaustive
- Pseudo stuck fault

Static Toggle Test Metric

- Guide test set selection
 - Try to place both 0 and 1 on each node
- Grade generated test set
 - Fraction of nodes that receive both 0 and 1

Toggle Test Metric Example

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1</td>
</tr>
<tr>
<td>S</td>
<td>0 1</td>
</tr>
<tr>
<td>B</td>
<td>0 1</td>
</tr>
<tr>
<td>A & S</td>
<td>0 1</td>
</tr>
<tr>
<td>S & B</td>
<td>0 1</td>
</tr>
<tr>
<td>&</td>
<td>0 1</td>
</tr>
<tr>
<td>+</td>
<td>0 1</td>
</tr>
<tr>
<td>Z</td>
<td>0 1</td>
</tr>
</tbody>
</table>

- 83% Toggle Coverage

What we learned from Murphy-Elf

- Which output the incorrect signal reaches
 - Very important – Taro
- Two different input patterns
 - The same activation and sensitization
 - Different test effectiveness – N-detect

Outline

- Production Testing
 - Basic Concerns
- Defect Effects (Modes) and Failure Causes
- Common Wisdom - Myths
 - Evidence - the ELF Experiments
 - Defect Classification
- Issues
 - More Myths
- The Future

Common Wisdom- Myth Number 2

- Exhaustive test of combinational circuit
 - All input patterns
 - Detects all defects
- The truth
 - Pattern sequence matters
 - Some defects insert state

© 2004, E.J. McCluskey, all rights reserved
Evidence - Murphy Tester Data

- Exhaustive test failure data

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Rated Speed</th>
<th>Slow Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>90%</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>95%</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>98%</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>99%</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>100%</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Common Wisdom- Myth Number 3

- Detection of “un-modeled faults” (defects)
 - Good measure of test quality
- The truth
 - Modeled faults means single stuck faults
 - Almost all defect behavior
 - Not like single-stuck fault
 - ELF35 5%, Murphy 35%

Defect Classification

Common Wisdom- Myth number 4

- Transition tests necessary
 - Only for timing defects
- The truth
 - Pattern sequence matters
 - Some defects insert state

Common Wisdom- Myth Number 5

- Thorough (high quality) Test
 - Patterns from several metrics
- The truth
 - Complete metric
 - May still be found

Common Wisdom- Myth Number 6

- Thorough (high quality) Test
 - Must target timing failures
- The truth
 - Absolutely correct
Outline

- Production Testing
 - Basic Concerns
 - Defect Effects (Modes) and Failure Causes
 - Common Wisdom - Myths
 - Evidence - the ELF Experiments
 - Defect Classification
- Issues
 - More Myths
- The Future

Conclusions

The Future

- Access a growing problem
 - Gate to Pin ratios continue to rise
- Test set size continues to rise

The Future - Fixes

- Access
 - More internal access circuitry
 - Another SOC-like level
 - More test points
 - Concurrent Error Detection or Correction
 - BIST – Mixed mode

The Future - fixes

- Test set size
 - More efficient test sets
 - Better test metrics
 - Concurrent Error Detection or Correction

Number of Logic Transistors per Pin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>20,000</td>
<td>40,000</td>
<td>60,000</td>
<td>80,000</td>
<td>100,000</td>
<td>120,000</td>
<td>140,000</td>
</tr>
</tbody>
</table>

Compiled from ITRS 1999 Data

Stimulus Test Pattern Size

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBit</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Compiled from ITRS 2003 Data
Conclusions

- Affordable, adequate production testing
 - Novel access circuitry
 - Better, proven test metrics

 Lucky accident?
 OR
 FUNDAMENTAL RESEARCH RESULT?

- Research funding can make it happen!