The Stanford InfoLab

Hector Garcia-Molina
Bob Mungamuru

Stanford University
InfoLab Research

- Information:
 - how to obtain information
 - how to manage it
 - how to exploit it
Hector’s Current Interests

- Information Privacy & Security
- Managing Bio-Diversity Information
- Entity Resolution
- Web Information
- Peer to Peer Systems
Information Privacy & Security

• How to build a SECURE database system?
 – good performance
 – usable
Information Privacy & Security

- How to build a SECURE database system?
 - good performance
 - usable

![Diagram showing database system architecture]

Client \(\rightarrow \text{Encrypt} \rightarrow \text{dbms} \)

Query \(Q \) \(\rightarrow \) Client-side Processor \(\rightarrow \) Answer

"All Data"
Information Privacy & Security

- Preservation, Performance, Functionality

![Diagram showing the relationship between preservation and privacy with easy and goal points marked.]
Key Configuration Management

- Safeguarding sensitive data
 - against data loss
 - against unauthorized access
Splitting

- **XOR**

 \[
 \begin{array}{c}
 010 \\
 110 \\
 101 \\
 001 \\
 \end{array}
 \]

- **Encryption**

 \[
 \begin{array}{c}
 \text{data} \\
 \text{key} \\
 \text{key} \\
 \text{ciphertext} \\
 \end{array}
 \]

- **DB + update logs**

 \[
 \begin{array}{c}
 \text{DB} \\
 \text{update log} \\
 \text{old snapshot} \\
 \end{array}
 \]
Example Configuration

data
Alice
Bob
Carol
Sharing Keys

![Diagram showing the sharing of keys between nodes labeled C, S, data1, Bob, and data2. The diagram illustrates the relationships and flows between these entities.]
“Problematic” Configuration
Configurations

Implementable

Proper

Simple

Read-Once
Checking a Configuration

\[a = b = c \]
\[(a = -1) \oplus (b = -1) \]
\[(c = -2) \oplus (d = -2) \]

no satisfying assignment!

therefore, unimplementable
Checking Another Configuration

(a = -1) ⊕ (d = -1) ⊕ (e = -1) ⊕ (c = -1)
(a = -2) ⊕ (b = -2)
(b = -3) ⊕ (c = -3)

Satisfying Assignment: a = -1, b = -2, c = -3
Checking Another Configuration

\[(a = -1) \oplus (d = -1) \oplus (e = -1) \oplus (c = -1)\]
\[(a = -2) \oplus (b = -2)\]
\[(b = -3) \oplus (c = -3)\]

Satisfying Assignment: \(a = -1, b = -2, c = -3\)
Proper Configurations

\[(e = -1) \oplus (f = -1) \oplus (d = -1) \]
\[a = e = b = f = c\]
Proper Configurations

Improper configuration, since e and f are forced to be equal.

\[(e = -1) \oplus (f = -1) \oplus (d = -1) \]

\[a = e = b = f = c \]

added constraint:

\[e \neq f \neq d \]
Simple Configurations

- Simple configurations have special structure:
 - S-vertices have at least one unshared child
 - C-vertices have no shared children

- Theorem:

 All simple configurations are proper.
Simple Configurations

The configuration on the right is simple.
Read-Once Configurations
Comments

Logical transformations **do not** necessarily preserve properties

- \(d \ (b + (ac(a+c)) + ae) \) ... unimplementable

- \(d \ (a + b) \ (b + c + e) \) ... implementable

- \(d \ (b + ac + ae) \) ... simple
Comments