Motivation

- Pseudorandom Test
 - Effectiveness with real defects
 - Probablistic models
 - Defect and fault coverage (SSF)
 - Defect level estimation and tester data
 - Unmodeled (colateral) coverage
 - Mapping logic effectiveness
Built-In Self-Test

- On-chip circuitry
 - Pattern generation (LFSR)
 - Response compression (MISR)
- Low-cost 😊
- Circuit speed 😊
- Applicability while in system 😊

But ..
- Test length 😞
- Area overhead 😞
- Fault coverage 😞

Pseudorandom Test

- Pseudorandom patterns
 - LFSR
- Test quality
 - Fault coverage
 - SSF
 - Transition faults
Test Chip Experiment

- Compare
 - Actual production defects
 - Fault models

- How
 - Collect
 - Defective chips
 - Test sets
 - Various test metrics
 - Various test conditions

Murphy Chip

- LSI Logic 150K CMOS Gate Array
- 25K Gate design
- $L_{\text{eff}} = 0.7 \ \mu\text{m}$
- Nominal VDD = 5v
- 5 Combinational CUT designs
 - 4 Copies of each CUT
- Support DFT circuitry
ELF35 Chip

- LSI Logic G10P technology
- $L_{\text{eff}} = 0.35 \mu m$
- Nominal VDD = 3.3v
- 6 CUT designs
 - 4 Combinational CUT designs
 - 1 translator, 3 datapath
 - 2 Sequential (2901’s) with full scan

Murphy CUTs Studied

- M12
 - 24 Inputs, 12 Outputs, 1,146 gates
 - 12×12 multiplier
 - 38 defective M12 CUTs
- ROB
 - 24 Inputs, 12 Outputs, 898 Gates
 - 12×12 mult. (robust path-delay fault testable)
 - 30 defective ROB CUTs
ELF35 CUTs Studied

- **M12**
 - 24 Inputs, 12 Outputs, 1,309 gates
 - \(12 \times 12\) multiplier
 - 38 defective M12 CUTs

- **PB**
 - 12 Inputs, 12 Outputs, 17,468 Gates
 - Pseudorandom to Binary translator
 - 139 defective PB CUTs

Test Escapes

- Undetected defective CUTs
Fault and Defect Coverage

- **Fault coverage**
 - Fraction of modeled faults detected by test set
 - Estimated theoretically or
 - Computed by simulation

- **Defect coverage**
 - Fraction of defective chips detected
 - On the tester
 - Using the given test set

Fault and Defect Coverage

- **SSF coverage and defect coverage**
 - Any correlation?

- **SSF coverage**
 - Fault simulation

- **Defect coverage**
 - Tester data
Defect and Fault Coverage (Murphy/ROB)

Defect & Fault Coverage (Murphy/M12)
Defect & Fault Coverage (ELF35/M12)

Defect & Fault Coverage (ELF35/PB)
Fault Coverage Estimation

- McCulskey et. al. (IEEE Trans. CAD 88) [1]
 - Relates
 - Pseudorandom test length
 - Fault coverage (SSF)
 - CUT dependence
 - Detectability profile
 - SSF detection characteristics

Fault Coverage Theoretical Estimation

\[E(C) = 1 - \left(\frac{1}{n_f} \right) \sum h_k e^{\left(-\frac{kL}{N} \right)} \]

- \(E(C) \) = Expected fault coverage
- \(n_f \) = Number of SSFs in the CUT
- \(h_k \) = Number of faults of detectability k
- \(N \) = Total number of different patterns
- \(L \) = Test length
BIST Escapes

- Compare the escapes vs. test length
 - Theoretical model
 - Fault simulation
 - Tester data

Escapes results (Murphy/ROB)

Theoretical - • Tester Data — Simulation
Escapes Results (Murphy/M12)

Test Length vs. Escapes

- Theoretical
- Tester Data
- Simulation

Escapes Results (ELF35/M12)

Test Length vs. Escapes

- Theoretical
- Tester Data
- Simulation
Defect level prediction

- Williams-Brown model
- McCluskey-Buelow model

\[DL = 1 - Y^{TT} \]

- DL = Defect Level (defect per million)
- Y = Yield
- TT = Test Transparency
Defect Level Calculation

- **TT (Test Transparency)**
 - Estimated by fault uncovery
 - TT = 1 – FC
 - Using Single Stuck at Faults
- **Fault coverage computation**
 - By simulation
 - Using theoretical models
 \[
 Y = 1 - \frac{\text{Number of defective CUTs}}{\text{Total number of CUTs}}
 \]

Defect Level (Murphy/ROB)

- Theoretical
- Simulation
- Tester data

![Defect Level Graph](image-url)
Defect Level (Murphy/M12)

Defect Level (ELF35/M12)
Defect Level (ELF35/PB)

Theoritical Simulation • Tester date

Collateral Coverage

- Detecting unmodeled defects
 - Many
- Non fault-dropping patterns (NFDPs)
 - Patterns that don’t drop new faults

Collateral Coverage = \[\frac{\text{Number of defects detected by NFDPs}}{\text{Total number of defective chips}}\]
Collateral Coverage

<table>
<thead>
<tr>
<th></th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murphy/ROB</td>
<td>16.67%</td>
</tr>
<tr>
<td>Murphy/M12</td>
<td>2.63%</td>
</tr>
<tr>
<td>ELF35/M12</td>
<td>5.41%</td>
</tr>
<tr>
<td>ELF35/PB</td>
<td>1.45%</td>
</tr>
</tbody>
</table>

Mapping Logic [3]

- Given an LFSR and a test length
- Find a cube with no fault dropping patterns
- Map to an image cube to increase coverage
- Add the additional H/W to the LFSR
Mapping Logic

Original Test Patterns

Pattern Generator

Mapping Logic

Transformed Test Patterns

Circuit Under Test (CUT)

Is it effective in catching defects?

Detects defective chips

Faster or slower?
Conclusions

- Fault coverage ≠ Defect coverage
- Fault escapes
 - Theoretical model → Very pessimistic
 - Fault simulation → Still pessimistic
 - Tester data almost always better
- Defect level
 - TT estimated theoretically → Very pessimistic
 - TT obtained by simulation → Still pessimistic
- Collateral coverage → reasonably high
BIG NEWS

- Single stuck fault model
 - NOT ACCURATE
- Pseudorandom testing
 - BETTER THAN IT SEEMS
 - Both by theoretical models and fault simulation
- Mapping logic
 - Catches defects fast

References