Diagnosis of Sequence Dependent Chips

2002 VLSI Test Symposium

James C.M. Li and Edward J. McCluskey
CRC, Stanford University

Outline

- Introduction
- Diagnosis Flow
- Experimental Results
- Summary

Sequence Dependence (SD)

- Tester response depends on pattern sequence
- Example:

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
<th>I6</th>
<th>O1</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>O5</th>
<th>O6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb. Circuit</td>
<td></td>
</tr>
<tr>
<td>O1, O2, O3, O4, O5, O6</td>
<td></td>
</tr>
</tbody>
</table>

Combinational

<table>
<thead>
<tr>
<th>I6</th>
<th>I5</th>
<th>I4</th>
<th>I3</th>
<th>I2</th>
<th>I1</th>
<th>O6</th>
<th>O5</th>
<th>O4</th>
<th>O3</th>
<th>O2</th>
<th>O1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb. Circuit</td>
<td></td>
</tr>
<tr>
<td>O6, O5, O4, O3, O2, O1</td>
<td></td>
</tr>
</tbody>
</table>

Sequence dependent

<table>
<thead>
<tr>
<th>I6</th>
<th>I5</th>
<th>I4</th>
<th>I3</th>
<th>I2</th>
<th>I1</th>
<th>O6</th>
<th>O5</th>
<th>O4</th>
<th>O3</th>
<th>O2</th>
<th>O1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb. Circuit</td>
<td></td>
</tr>
<tr>
<td>O6, O5, O4, O3, O2, O1</td>
<td></td>
</tr>
</tbody>
</table>

Other reordered sequence possible

Possible Causes for SD

- Single Stuck-at Fault (SSF)?
 - No
- Feedback bridging fault?
 - Possible
 - Diagnosis difficult
 - Layout information unavailable
- Stuck-Open Fault (SOF)?
 - Possible
 - Diagnosis possible
 - Schematic available in databook

Diagnosis of SD Chips

- Murphy experiment [McCluskey ITC’00]
 - 116 defective chips (total 5.5K tested)
 - 11 SD chips (Test speed independent)
 - Focus of this research
 - 39 SD chips (Test speed dependent)
 - One resistive open [Li ITC’01]
 - Still working on others
- Goal of this research
 - Identify cause of 11 SD chips
 - Locate failure site

Stuck-Open Fault (SOF) Model

- Proposed by Wasdack in 78
 - Transistor fails to turn on
- Example: NAND
 - 4 Stuck-open fault sites: T1..4

B T1
A T2
T3 T3
T4 T4
Z
Diagnosis of Sequence Dependent Chips

SD Caused by Stuck-open Fault
- NAND example: T1 stuck-open fault
 - Seq. 1: detected
 - Seq. 2: undetected
 - Charges stored in Z

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Zgood</th>
<th>Z1_SOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq. 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Seq. 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Previous Related Work
- Stuck open fault simulation [Barzilai 86] [Konuk 96]
 - Fault simulation only, no diagnosis
 - No experiment
- Transition fault simulation [Waicukauski 87]
 - Fault simulation only, no diagnosis
 - No experiment
- Open diagnosis [Hora 01] [Venkataraman 00]
 - Sequence dependence not considered

Outline
- Introduction
- Diagnosis Flow
- Experimental Results
- Summary

Diagnosis Terminology
- Failure Traces
 - Observed from tester
 - Failing patterns, pins (for test set applied)
- Fault simulation
 - Logic simulation with fault injected
- Fault signatures
 - From fault simulation
 - Failing patterns, pins (for test set simulated)

Diagnosis Flow
- Test Set
- Test
 - Failure Traces (FT)
- SSF Fault Simulation
 - Fault Signatures (SSF)
- Signature Converter
 - Fault Signatures (SOF)
- Matching
- Diagnosis results

Example Circuit
- PI = primary input
- PO = primary output
- CL = combinational logic

Charges stored in Z
A
B
Z
T1
1100
0
1
1
0
0011
Z
T1_SOF
0011
1
1
1
0
1100
Z
T1_SOF
19
52
Diagnosis of Sequence Dependent Chips

Diagnosis of Example Circuit
- Test
 - Failure traces
- SSF fault simulation
 - FS for A/1
- Signature Converter
 - FS for T1 SOF
- Match FT with FS
 - T1 SOF diagnosed

Signature Converter
- Why?
 - Convert SSF signatures to SOF signatures
- How?
 - For every failing pattern J in SSF signature
 - Check pattern pair \(\{J-1, J\} \)
 - SOF excited?
 - Yes, SSF signature J \(\Rightarrow \) SOF signature
 - No, SSF signature J discarded

Excitation Condition Table
- Gate input pairs excite SOF
- NAND example

Signature Conversion Example
- Pattern J,K both detect A/1 (SSF simulation)
 - \(\{J-1, J\} \) excite T1 SOF
 - \(\{K-1, K\} \) no excitation

Signature Conversion Example (2)
- Pattern J
 - T1 SOF excited by \(\{J-1, J\} \)
 - Propagation guaranteed by SSF simulation
 - T1 SOF detected
 - SSF signature copied
- Pattern K
 - T1 SOF not excited by \(\{K-1, K\} \)
 - T1 SOF not detected
 - SSF Signature discarded

Outline
- Introduction
- Diagnosis Flow
- Experimental Results
- Summary
The “Murphy Test Chip”
- Test chip description [McCluskey ITC’00]
 - 0.7µm technology, 5V nominal VDD
 - 25K gates, combinational circuits
 - 5 designs: 2 data path, 3 control Logic
 - 5.5K chips tested
 - 11 sequence dependent chips
 - Speed independent
 - SD.1 to SD.11

Diagnosis Results (SD.1 to 7)
- 15 detect SSF test set applied
 - Other test sets in paper

<table>
<thead>
<tr>
<th>Chip ID</th>
<th>SSF diagnosis</th>
<th>SOF diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of faults</td>
<td># of faults</td>
</tr>
<tr>
<td>SD.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SD.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SD.3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SD.4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>SD.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SD.6</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>SD.7</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

SD.8 and SD.9
- Single fault diagnosis failed
 - Neither SSF nor SOF
 - Combination of two fault signatures
 - Match failure traces
 - Example
 - Fault Signature (X/1 SSF)
 - Fault Signature (TY SOF)

Improved Diagnosis Flow
- Test Set
 - Test
 - SSF Fault Simulation
 - Fault Signatures (SSF)
 - Signature Converter
 - Fault Signatures (SOF)
 - Matching
 - Failure Traces
 - Diagnosis results

Diagnosis Results (SD.8, 9)
- Multiple faults diagnosed
 - Present simultaneously

<table>
<thead>
<tr>
<th>Chip ID</th>
<th>Commercial SSF diagnosis</th>
<th>SOF + SSF diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of faults</td>
<td>Faulty gate</td>
</tr>
<tr>
<td>SD.8</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>SD.9</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

Possible Reason for Multiple Faults
- Clustered defects

Wafer map
Unsuccessful Diagnosis (SD.10,11)
- Possible reasons
 - Feedback bridging faults
 - Mismatch of library elements
 - Schematic shown in book
 - Actual implementation

Outline
- Introduction
- Diagnosis Flow
- Experimental Results
- Summary

Summary
- Diagnosis technique presented
 - Multiple faults
 - 2 fault models
 - SSF, SOF
- Demonstrated by experiment
 - 11 sequence dependent chips
 - 7 chips: single stuck open fault
 - 2 chips: multiple faults (SSF + SOF)

Thank You!