The ARGOS Project

- Reliable Computing in Space
 - Autonomous navigation and data processing
 - Radiation-hardened components
 - Expensive, old technology, unavailable
- Commercial Off-the-Shelf (COTS) Components
 - Comparative evaluation in space

http://crc.stanford.edu/projects/argos.html
ARGOS Satellite Computing Testbed

- Rad-hard vs. COTS components
- Evaluate Software-Implemented Hardware Fault Tolerance (SIHFT)
- Error data collection in a real space experiment (no simulation or fault injection)

The ARGOS Satellite

- Advanced Research and Global Observations Satellite
- Launch: Feb. 23, 1999
- Orbit: 800 km Altitude, Sun Synchronous, 98° Inclination
- Two Processor Boards
 - Radiation-Hardened
 - COTS
Computing Testbed

- Hard Board
 - Harris RH3000 radiation-hardened chip set
 - Self-checking pair
 - SOI SRAMs
 - EDAC memory
- COTS Board
 - IDT R3081
 - No error detection hardware
 - No EDAC

Software-Implemented Error Detection

- Time Redundancy
 - Error Detection by Duplicated Instructions (EDDI)
- Control Flow Checking
 - Control Flow Checking by Software Signatures (CFCSS)
- Compiler Support
Software-Implemented Error Detection

- Software-Implemented EDAC
 - Compensate for lack of hardware EDAC
- Other
 - Software duplication/TMR
 - Watchdog task and timers
 - Algorithm-Based Fault Tolerance (ABFT)
 - Assertions

Summary

- Actual Space Radiation Test
 - No artificial fault injections
- Testing Efficacy of COTS and SIHFT
References (1)

References (2)