Automatic Configuration Generation for Application-Dependent Testing of FPGA Interconnects

Mehdi Baradaran Tahoori
Stanford CRC
November, 2002

Outline
- Problem Statement
- Theory
 - Single-term functions
 - Generalization to Entire FPGA
- Satisfiability
 - Background
 - SAT formulation for FPGA testing
- Results
- Complete Test set
- Results
- Summary

Problem Statement
- Test FPGA routing resources
 - For a specific mapped design
- Different from
 - Design verification
 - Manufacturing testing

Motivation
- Mapped designs not fully testable
 - No structural testing performed
 - No scan chains, BIST, test points, ...
 - FPGA users rely on manufacturing test
- Why routing resources?
 - 80% of FPGA transistors
 - Well-known techniques for logic blocks
 - [Abromovic][Renovell]

Applications
- Application-Specific FPGA
 - Weak parts working only for a specific design
 - Not good for all designs
 - Xilinx Easy-path
 - System-level testing
 - Mission-critical applications
 - Fault-tolerant applications

Previous Work
- Partitioning [Das & Touba]
 - Decomposition into fanout-free logic cones
 - One fanout branch at a time
 - Transparent logic + FF in every CLB
 - 2-18 test configurations
 - Depending on the size of circuit
 - Lose some bridging faults by partitioning
 - Xilinx Easy-path
 - One net at a time
 - Hundreds of configurations
 - Lose lots of bridging faults
Approach
- Keep configuration of routing resources
- Keep sequential behavior of design unchanged
 - Not adding or removing flip-flops
- Implement testable functions in logic blocks

Advantages
- Timing of original design preserved
 - Not changing critical paths
- At-speed testing
- No extra place-and-route for test configurations
- Fast reconfiguration time
 - Partial reconfiguration of only logic blocks
- Configuration storage overhead minimized
 - Storing only differences [Huang]
- No fault missed due to partitioning
- Works for all SRAM-based FPGAs and CPLDs

Outline
- Problem Statement
- Theory
 - Single-term functions
 - Generalization to Entire FPGA
- Satisfiability
 - Background
 - SAT formulation for FPGA testing
- Results
- Complete Test set
- Results
- Summary

Single-term Function
- Logic function with only one minterm or maxterm
- Activating Input:
 - input values for single minterm (maxterm)
- All sensitized faults are detectable
- Test vector = activating input
- \(\text{A1, B0, C1, D1, F0, A_{BF}, B_{BF}, C_{BF}, D_{BF}} \)

Example
- Network of single-term function with activating inputs
- All sensitized faults detectable
Necessary Condition
- A combinational logic network \(N \)
- Test Vector \(V \)
- All sensitized (multiple) faults are detectable
 - For all net \(n \) with value \(r_n \)
 - \(\forall n \) stuck-at \(r_n \) detectable
- Then
 - All logic functions are single-term
 - Input of each function = activating input

Proof
- Consider a function \(F \) in \(N \)
 - \(v = m \) Inputs of \(F \)
 - Faulty input \(v' \)
 - All multiple faults detectable
 - \(F(v) \neq F(v') \)
 - For all \(2^m-1 \) possible values for \(v' \)
 - \(F \) is single-term
 - \(v = \) activating input of \(F \)

Sequential Circuit
- Sequential network of single-term functions
 - Function \(F_i \) followed by flip-flop \(F \)
 - Preset value of \(F \)
 - Number of test cycles = Maximum sequential depth
 - Longest sequential path from PI to PO
 - Preset values of FFs in FPGAs
 - Independently programmable for each FF

Stuck-at Faults
- First Configuration:
 - All LUTs implement AND
 - Preset values of FFs: 1
 - Input Vectors: 1
 - All stuck-at 0 faults detectable
- First Configuration:
 - All LUTs implement OR
 - Preset values of FFs: 0
 - Input Vectors: 0
 - All stuck-at 1 faults detectable

Bridging Faults
- Fault list
- All pair-wise faults for inputs of each LUT
- \(N \)-input LUTs
- \(\log N \) configurations with single-term functions
- Activating inputs: Walsh-Rademacher codes

Configuration Generation
- Backtracks
- Implication of fanout stem and branches
- NP-complete in general

Mehdi Baradaran Tahoori

Page 3

November 2002
Problem Definition

- For the first configuration
 - Partition all the nets into two groups
 - s.t for each LUT with N inputs
 - N/2 inputs in first group, N/2 in second group
 - Assign 0(1) to all nets in first group
 - Assign 1(0) to all nets in second group
 - For the next configurations (2 to \(\log_2 N \))
 - Repeat this procedure recursively
 - For each group obtained in the previous step
 - Implication in algorithm
 - Fanout stem and all branches in same group

Approaches

- Develop specific ATPG algorithm
 - Heuristics
- Convert problem to another domain
 - Use pre-existing solutions in domain
 - Graph model
 - Satisfiability (SAT)

Outline

- Problem Statement
- Theory
 - Single-term functions
 - Generalization to Entire FPGA
- Satisfiability
 - Background
 - SAT formulation for FPGA testing
 - Results
 - Complete Test set
 - Results
 - Summary

Satisfiability

- A boolean function \(\mathcal{F}(x_1, \ldots, x_n) \)
 - Typically in CNF (Product of Sums)
 - Each sum called clause
 - Find assignment to \(x_1, \ldots, x_n \) s.t. \(\mathcal{F}(x_1, \ldots, x_n) = 1 \)
 - Unsatisfiable \(\iff \forall x_1, \ldots, x_n, \mathcal{F}(x_1, \ldots, x_n) = 0 \)
- NP-complete
 - Other NP-complete problems reducible to SAT

Problem Solving by SAT

- Convert original problem to a SAT problem
 - Original problem \(\Rightarrow \) boolean function \(\mathcal{F} \)
- Use SAT-solver for \(\mathcal{F} \)
 - SAT
 - Variable assignment \(\Rightarrow \) original solution
 - UNSAT : no solution for original problem
 - Issues
 - Complexity of generation of \(\mathcal{F} \)
 - Size of \(\mathcal{F} \) in terms of size of original problem
 - Complexity of solving SAT
 - Number of clauses, variable dependencies...

SAT Formulation

- SAT function for one LUT
 - M inputs
 - Exactly M/2 of inputs 0, M/2 1
 - \(S_i^0 = 1 \iff \) exactly \(k \) out of \(n \) inputs are 1
 - \(S_i^0(X, \ldots, X) = \prod x_{i,k} = n \)
 - \(S_i^0(X, \ldots, X) = 0 \)
 - \(S_i^0(X, \ldots, X) + \sum_i S_i^0(X, \ldots, X) , 0 < k < n \)
- SAT formulation for each LUT
 - \(S_{M/2}^{M/2} = 1 \)
Example

- 4-input LUT
 \[S(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3) x_2 + x_2 + x_4) + (x_1 + x_2 + x_3) x_2 + x_2 + x_4) \]
- Possible answers
 \((x_1, x_2, x_3, x_4) = (0011), (0101), (1100), \ldots\)

Example

- One variable for each net
- SAT function:
 \[\mathcal{F} = S(x_1, x_2, x_3, x_4) S(x_1, x_2, x_3, x_4) S(x_1, x_2, x_3, x_4) S(x_1, x_2, x_3, x_4) \]

Example (cont)

- Possible solution
 \(<x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}> = <0, 0, 1, 1, 0, 1, 1, 0, 0, 1>\)
- Two groups: \(G_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}, G_2 = \{x_8, x_9, \ldots\}\)

Test Configurations

- First Configuration
 - Each LUT
 \(\geq 2 \) inputs in \(G_1 \), \(2 \) inputs \(G_2 \)
 - Assign \(0, 1 \) to \(G_1 \), \(1, 0 \) to \(G_2 \)
 - Activating inputs \(\Rightarrow \) LUTs configuration

- Second Configuration
 - Partition \(G_1 \) and \(G_2 \) recursively
 \(\geq G_{ij}, G_{ij}, G_{ij}, G_{ij} \)
 - Each LUT
 - Exactly one input in each \(G_j \)

Second Configuration

- SAT function for each LUT: \(S(x, y) = (x+y) \)
- \(G_1\) partitioning: \(\mathcal{F}_1 = S(x_1, x_2, x_3) S(x_4, x_5, x_6) S(x_7, x_8, x_9) S(x_{10}, x_{11}) \)
- \(G_2\) partitioning: \(\mathcal{F}_2 = S(x_1, x_2, x_3) S(x_4, x_5, x_6) S(x_7, x_8, x_9) S(x_{10}, x_{11}) \)
- Overall SAT function: \(\mathcal{F} = \mathcal{F}_1 \mathcal{F}_2 \)
 - Disjoint variable sets for \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \)
Automatic Configuration Generation for Application-Dependent Testing of FPGA Interconnects

Mehdi Baradaran Tahooori
Outline
- Problem Statement
- Theory
 - Single-term functions
 - Generalization to Entire FPGA
- Satisfiability
 - Background
 - SAT formulation for FPGA testing
- Results
- Complete Test set
 - Results
 - Summary

Complete Test Set
- Fault list
 - All bridging faults for n nets
 \(\Rightarrow \) Number of faults = \(n(n-1)/2 \)
 - All opens and stuck-at faults
 - Conventional bus testing for M lines
 \(\Rightarrow \) Assumes full controllability and observability
 - Example: 6 lines, 3 vectors

Complete Test Set (cont)
- Single-term functions
 - Offer full controllability and observability
- Consider one partition \(|P_i| = n \)
- \(\log_2(n+2) \) test configurations
- Bus test vectors \(\Rightarrow \) LUT test configurations
- Cover all bridging faults, opens, stuck-at

Example (cont)
- 12 nets, 4 configurations

<table>
<thead>
<tr>
<th>Circuit</th>
<th>CLBs</th>
<th>Nets</th>
<th>Faults</th>
<th>Configs</th>
</tr>
</thead>
<tbody>
<tr>
<td>term1</td>
<td>50</td>
<td>88</td>
<td>3082</td>
<td>7</td>
</tr>
<tr>
<td>9symmi</td>
<td>110</td>
<td>79</td>
<td>3081</td>
<td>7</td>
</tr>
<tr>
<td>apex7</td>
<td>120</td>
<td>115</td>
<td>6555</td>
<td>7</td>
</tr>
<tr>
<td>busc</td>
<td>156</td>
<td>151</td>
<td>11325</td>
<td>8</td>
</tr>
<tr>
<td>exm2</td>
<td>188</td>
<td>205</td>
<td>20910</td>
<td>8</td>
</tr>
<tr>
<td>alu2</td>
<td>195</td>
<td>153</td>
<td>11628</td>
<td>8</td>
</tr>
<tr>
<td>2large</td>
<td>196</td>
<td>186</td>
<td>17205</td>
<td>8</td>
</tr>
<tr>
<td>vda</td>
<td>272</td>
<td>225</td>
<td>25200</td>
<td>8</td>
</tr>
<tr>
<td>dma</td>
<td>288</td>
<td>213</td>
<td>22578</td>
<td>8</td>
</tr>
<tr>
<td>alu4</td>
<td>323</td>
<td>255</td>
<td>32385</td>
<td>9</td>
</tr>
<tr>
<td>k2</td>
<td>440</td>
<td>404</td>
<td>81406</td>
<td>9</td>
</tr>
<tr>
<td>bnre</td>
<td>462</td>
<td>352</td>
<td>67776</td>
<td>9</td>
</tr>
<tr>
<td>dfsm</td>
<td>506</td>
<td>420</td>
<td>87990</td>
<td>9</td>
</tr>
<tr>
<td>z03</td>
<td>702</td>
<td>608</td>
<td>184528</td>
<td>10</td>
</tr>
</tbody>
</table>
Real FPGAs
- FPGA with M LUTs
 - Maximum number of nets $n_{max} = 5 \times M$
 - One net for each input (4) and output (1)
 - For any mapped design
 - Upper bound on number of configurations
 - $\lceil \log_2 (5M+2) \rceil$
 - Complete test set

Upper Bounds
- Xilinx Virtex II FPGAs

<table>
<thead>
<tr>
<th>Device Name</th>
<th>LUTs</th>
<th>Max Nets</th>
<th>Faults</th>
<th>Max Configs</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC2V40</td>
<td>516</td>
<td>2580</td>
<td>3.3 M</td>
<td>12</td>
</tr>
<tr>
<td>XC2V88</td>
<td>1024</td>
<td>5120</td>
<td>13.1 M</td>
<td>13</td>
</tr>
<tr>
<td>XC2V250</td>
<td>3072</td>
<td>15360</td>
<td>118 M</td>
<td>14</td>
</tr>
<tr>
<td>XC2V500</td>
<td>6144</td>
<td>30720</td>
<td>472 M</td>
<td>15</td>
</tr>
<tr>
<td>XC2V1000</td>
<td>10240</td>
<td>51200</td>
<td>1316 M</td>
<td>16</td>
</tr>
<tr>
<td>XC2V1500</td>
<td>15360</td>
<td>76800</td>
<td>2949 M</td>
<td>17</td>
</tr>
<tr>
<td>XC2V2000</td>
<td>21504</td>
<td>107520</td>
<td>5780 M</td>
<td>17</td>
</tr>
<tr>
<td>XC2V3000</td>
<td>28672</td>
<td>143000</td>
<td>10276 M</td>
<td></td>
</tr>
<tr>
<td>XC2V4000</td>
<td>46080</td>
<td>230400</td>
<td>28542 M</td>
<td></td>
</tr>
<tr>
<td>XC2V6000</td>
<td>67584</td>
<td>337920</td>
<td>57095 M</td>
<td></td>
</tr>
<tr>
<td>XC2V8000</td>
<td>93184</td>
<td>465920</td>
<td>108540 M</td>
<td></td>
</tr>
</tbody>
</table>

Summary
- Single-term functions
 - FPGA interconnect testing
- SAT formulation
 - Systematic conversion of FPGA testing into SAT
 - Testing for bridging fault
 - Experimental results on various benchmarks
 - Very fast
- Complete test set
 - All possible bridging, open and stuck-at faults
 - Less than 20 configurations for largest FPGA

Conclusions
- Single-term functions
 - Offer full controllability and observability
 - Best for FPGA testing
 - Better than Transparent logic
- SAT formulation completely practical
 - Very few configurations, very fast
- Complete testing using single-term functions
 - Practical

References