Diagnosis of Opens in FPGA Interconnects

Mehdi Baradaran Tahoori
Stanford CRC
April, 2002

Outline

- Introduction
- Diagnosis
 - Stuck-open and resistive-open
 - Coarse grain diagnosis
 - Fine grain diagnosis
- Summary

Resistive Open

- Imperfect connection between two nodes
- Defect resistance
- Causes:
 - Imperfect Contact
 - Imperfect Via
 - Thin Wire

Modeling

- Delay of defective chain
 \[\text{Delay} \approx [R_s (V_{DD}) + R_{dev}]C \]
- \(R_s (V_{DD}) \): Transistor turn-on resistance
- Function of \(V_{DD} \)

Terminology

- Delay Delta [Li ITC01]
 Defective Circuit Delay − Good Circuit Delay
- Delay Ratio
 \(\frac{\text{Defective Circuit Delay}}{\text{Good Circuit Delay}} \)
- Detectability metric for resistive open

Virtex FPGA Model
Diagnosis of Opens in FPGA Interconnects

Switch Matrix

<table>
<thead>
<tr>
<th>W1</th>
<th>W2</th>
<th>W3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>E2</td>
<td>E3</td>
</tr>
<tr>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
</tbody>
</table>

New Detection Technique

- Change load capacitance
- Additional fanout paths
- Higher delay ratio

Circuit Model

- One additional fanout
- Turning on one more PIP
- Maximum number of fanouts
- Number of PIPs connected to A

![Circuit Model Diagram]

Delay Ratio

![Delay Ratio Graph]

Diagnosis

- Two-step diagnosis flow
- Coarse-grain diagnosis
 - Defective net
- Fine-grain diagnosis
 - Inside defective net
 - Defective element inside net
 - PIP or line segment

Coarse-Grain Diagnosis

- Buffered WUTs [RATS Spr'01]
 - Wires Under Test
 - Going through FF every m CLBs
- Failing wire
 - Reading FFs contents
 - Scan out
 - Read-back
 - Reading content of all FFs at once
 - Much faster than regular scan-out
Diagnosis of Opens in FPGA Interconnects

Big Picture
Buffered at every 2 CLBs

Coarse-Grain Diagnosis
- No logic implemented (transparent logic)
 - The first failing clock
 - The first faulty FF
- The faulty WUT
- No extra effort for this diagnosis
 - As a part of test procedure

Outline
- Introduction
- Diagnosis
 - Stuck-open and resistive-open
 - Coarse grain diagnosis
 - Fine grain diagnosis
- Summary

Problem Statement
- Input
 - Failing WUT
 - FF + (PIP + Line segment) \(\Rightarrow\) + FF
- Output
 - Exact failing resource in that WUT
 - PIP or line segment

New Technique
- Remove & Reroute
 - Remove some resources from original WUT
 - Reroute the WUT without using those
- If new WUT fails
 - Fault in non-removed resources
- Else
 - Fault in removed resources

Basic Idea
- Original WUT
Diagnosis of Opens in FPGA Interconnects

Basic Idea
- After Removing

![Diagram](image)

Configuration Generation
- Removing
 - Remove the resources from configuration file
 - Partially routed net
- Rerouting
 - Let P&R tool complete the net
 - Without using specified resources
 - Marking those resources

Solution
- Removing
 - Remove incoming and outgoing PIPs
- Rerouting
 - Mark all PIPs connected to that line
 - Not to be used by P&R

Automatic Config Generation
- Problem statement
 - A systematic method to generate
 - A number of configuration
 - Some resources removed
 - Remove&Reroute method
 - Each pass or fail
 - Specify the faulty resource
 - Which resources to remove in each config?
 - How many configurations?
 - How many steps?
Diagnosis of Opens in FPGA Interconnects

Possible solutions
- Linear Search
 - Remove one element at a time
- Binary Search
 - Divide search space by two in each step

Linear Search
- For N elements
 - Number of steps: N - 1
 - Number of configurations: N - 1

New Technique
- Overlapped Search
 - For N elements
 - $\log_2 N$ configurations
 - $\log_2 N$ steps
 - No dynamic selection of next configuration
 - Unlike binary search

Overlapped Search
- In each configuration i
 - N/2 elements removed
 - Elements with bit i set
 - Failing configurations
 - Binary representation of faulty element

Diagnosis for Resistive Open
- Two-step method
 - Works best for stuck opens
 - Rerouting
 - Longer path
 - Lower delay ratio
New Technique

- Combines
 - Overlapped search
 - For faster diagnosis
 - Less configurations
 - Adding fanout branches
 - Instead of resource removing
 - Better delay ratio

New Technique (con’t)

- Overlapped search + fanouts

Summary

- Diagnosis
 - Two-step flow for stuck opens
 - Coarse-grain diagnosis
 - Fine-grain diagnosis
 - Remove & Reroute technique
 - Fewer configurations and steps
 - Diagnosis for resistive opens
 - Overlapped search + fanouts
 - Fewer number of configurations
 - Better resolution