AN EXPERIMENTAL CHIP TO EVALUATE TEST TECHNIQUES
CHIP AND EXPERIMENT DESIGN

Piero Franco
Edward J. McCluskey
Center for Reliable Computing
Stanford University
Stanford, CA

William D. Farwell
Robert L. Stokes
Hughes Aircraft Company
Radar Systems
Los Angeles, CA

PURPOSE

- Basic Problem
 100% Fault Coverage ➔ 0 DPM

- Objective
 - Thorough Experimental Comparison
 - Many Different Test Techniques
 - Escape Rate

PURPOSE

- Experimental Chip to Evaluate Test Techniques

Main Goals
- Real-World Circuits
- Evaluate Many Test Techniques
- Test Under Identical Conditions
- Include Exhaustive Tests as a Reference
- Real Production Failures, Not Injected Failures

Test Chip
- 25k Gates
- LSI Logic LFT150K CMOS Gate Array
- Over 5,491 Die Evaluated

OUTLINE

- Participants
- Previous Work
- Test Chip Architecture
- Test Plan
- Conclusion

PARTICIPANTS

- Hughes:
 - Architecture, Detailed Design, Simulation
- Stanford CRC:
 - Architecture, CUT Design, Test Sets, ATE Program, Analysis
- LSI Logic:
 - Layout, Fabrication, Package Prototypes
- Digital Testing Services:
 - ATE Program, Testing
- Others:
 - CrossCheck, Sandia, U. Iowa

RELATED WORK

- Direct Approach
 - Collect Field Failure Data
 - Difficult to Control, Sensitive Data
- Fault Injection
 - Injected Faults Representative?
- “Realistic” Fault Models
 - Multiple Stuck-At Faults, Inductive Fault Analysis
 - Does Benefit Outweigh Complexity?
- Statistical Models
 - Quality Level In Terms of Coverage and Yield
 - Validating Statistical Models?
PREVIOUS EXPERIMENTS

- Several Previous Experiments

<table>
<thead>
<tr>
<th>Chips</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velazco 90</td>
<td>Design Verification</td>
</tr>
<tr>
<td>Elo 90</td>
<td>9 Boolean Tests</td>
</tr>
<tr>
<td>Das 90</td>
<td>78k Stuck-At</td>
</tr>
<tr>
<td>Pancolly 90, 92</td>
<td>970 Stuck-At, Various Delay, IDDQ</td>
</tr>
<tr>
<td>Maxwell 91, 92</td>
<td>16-26k Scan, Des. Ver., IDDQ</td>
</tr>
<tr>
<td>Perry 92</td>
<td>Many Stuck-At, IDDQ</td>
</tr>
<tr>
<td>Schiessler 93</td>
<td>1.4k Des. Ver., Scan, IDDQ</td>
</tr>
<tr>
<td>Gayle 93</td>
<td>10M Stuck-At, At-Speed, IDDQ</td>
</tr>
<tr>
<td>Wiscombe 93</td>
<td>10k Stuck-At, IDDQ</td>
</tr>
</tbody>
</table>

- Give Insights
- Compare Limited Number of Test Techniques

OUR APPROACH

- Specially Designed Test Chip
- More Thorough Experiment

- Many Testing Techniques Compared
- Exhaustive, 2^n Reference Tests
- Tested Different:
 - Design Styles
 - Clocking Methodologies and Speeds
 - Data Sources
 - Response Analysis
- Reasonable Sample Size
 - Over 5,491 Die
 - 20 CUTs Per Die

OUTLINE

- Participants
- Previous Work
- Test Chip Architecture
 - Block Diagram
 - Circuits Under Test
 - Test Application Modes
 - Response Evaluation
- Test Plan
- Conclusion

TEST CHIP ARCHITECTURE

- 3 Elements
 - Data Source
 - 5 Circuits-Under-Test (CUT) – 4 Copies Each
 - Separate Response Analysis

- 4 of CUTS
 - Response Analysis

CIRCUITS UNDER TEST

- Combinational
- 12 or 24 Inputs
- 5 Types of CUTs
 - Data Path Logic
 - Multiplier, Multiplier-Squarer
 - Manual Design
 - Control Logic
 - 3 DMA Read Buffer Control Implementations
 - Synthesized
- 4 Copies of Each CUT Type
CIRCUITS UNDER TEST

<table>
<thead>
<tr>
<th>Name</th>
<th>Inputs</th>
<th>Outputs</th>
<th>LSI Gates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUL</td>
<td>24</td>
<td>12</td>
<td>1,146</td>
<td>12x12 Multiplier</td>
</tr>
<tr>
<td>SQR</td>
<td>12</td>
<td>6</td>
<td>446</td>
<td>6x6 Multiplier Followed by Squarer</td>
</tr>
<tr>
<td>STD</td>
<td>24</td>
<td>12</td>
<td>298</td>
<td>Any LSI Gates</td>
</tr>
<tr>
<td>ELM</td>
<td>24</td>
<td>12</td>
<td>380</td>
<td>Elementary Gates</td>
</tr>
<tr>
<td>ROB</td>
<td>24</td>
<td>12</td>
<td>898</td>
<td>Robust Path-Delay Fault Testable</td>
</tr>
</tbody>
</table>

*1 LSI Gate is Approximately 4 Transistors

DATA SOURCES

- External Parallel Vectors
 - Direct
 - Design Verification, Stuck-At, Weighted Random, IDDQ
 - 2-Pattern
 - Delay Fault Tests
 - Simulate Scan
- Simulated Scan
 - Logic to Simulate 1 Bit Shift
- Internal Pseudo-Random/Exhaustive Vectors
 - Super-Exhaustive \(2^n\) for SQR CUT

CONTROL LOGIC BLOCK

- Three Implementations of the Same Function, Same Speed
 - Original Design
 - DMA Read Buffer Controller
 - 34 Inputs
 - Unconstrained Synthesis
 - 2-Level Minimization
 - Constrained Technology Mapping
 - Constrained Technology Mapping
 - 2-Level to 3-Level Robust
 - Unconstrained Technology Mapping

CLOCKING MODES

- Direct
 - "Conventional"
- Pulse Width
 - For Slow ATE
- Internally Generated
 - Tracks Process

RESPONSE EVALUATION – OUTPUT SAMPLING

- Four CUT Copies Compared

STABILITY CHECKING

- Technique for Delay Fault Testing [Franco 91]
 - First Experimental Evaluation
 - 216 Stability Checkers per Die
 - If (Change in Signal) AND (Checking Period=1) \(\Rightarrow\) ERROR=1
RESPONSE EVALUATION – STABILITY CHECKING

- All Stability Failures Detected
- No Comparators Needed

<table>
<thead>
<tr>
<th>CUT</th>
<th>Stability Checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy 1</td>
<td>12</td>
</tr>
<tr>
<td>Copy 2</td>
<td>12</td>
</tr>
<tr>
<td>Copy 3</td>
<td>12</td>
</tr>
<tr>
<td>Copy 4</td>
<td>12</td>
</tr>
</tbody>
</table>

Stability Checking Error

FAILURE COUNTERS

- On-Chip Counters
 - First Sampling Error (24 Bits)
 - Sampling
 - Stability Checking
 - Total Number of Errors (16 Bits)
 - Sampling
 - Stability Checking
 - Stability Checking Only
- On-Chip Data Loggers
 - Scan Out at End of Test

SIGNATURE ANALYSIS

- Only on MUL CUT Type
- Area Overhead
- Both Serial and Parallel
 - Configurable
 - 12, 16, 24, 48 Bits
- Partial Evaluation Now
 - Too Much Test Time
 - MUX to Reconfigure and Share Logic
- More Thorough Evaluation On Interesting Dice Later
 - Reprobe or Packaged

OUTLINE

- Participants
- Previous Work
- Test Chip Architecture
 - Test Plan
 - Testing Strategy
 - Support Circuitry Tests
 - CUT Test Overview
- Conclusion

TESTING STRATEGY

- 2 Stage Testing

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer</td>
<td>CUT Test 1</td>
</tr>
<tr>
<td>5,491 Dice</td>
<td>CUT Test 2</td>
</tr>
<tr>
<td>5,491 Dice</td>
<td>...</td>
</tr>
<tr>
<td>5,491 Dice</td>
<td>CUT Test n</td>
</tr>
<tr>
<td>Confidential</td>
<td>Public</td>
</tr>
</tbody>
</table>

- Failures Targeted
 - “Hard-To-Detect” Defects, Not Gross Defects

SUPPORT CIRCUITRY TESTS

- Important To Have Thorough Tests
- 11 Scan Chains to Improve Testability
- Two Stuck-at Test Sets (98.8% Coverage)
- IDDQ Test with 250 Strobes
- Conservative Timing (Large Slack)
- CUT Inputs Held Constant
 - IDDQ Tests
 - CrossCheck Test Circuitry Tests
- No Evidence of Support Circuitry Failures in Stage 2 Testing
CUT TEST SETS

- Design Verification (Functional)
- ATPG:
 - Stuck-at, Stuck Open, Transition, Delay
 - Pin, Gate, Switch Level
 - Various Vendors, Coverages
- Pseudo-Random, Exhaustive, Super-Exhaustive
- Weighted Pseudo-Random
- CrossCheck
- IDDQ

TEST APPLICATION MODES

Data Source Modes
- Parallel
 - 1-Pattern
- Parallel
 - 2-Pattern
- Simulated
- Scan
- Internal
- Pseudorandom

Clocking Modes
- Direct
 - (At-Speed)
- Pulse Width
- Generated
- Internally
- Generated

Timing
- Rated
- Fast
- Slow

TEST APPLICATION

- Most Previous Tests
 - Repeated at Very-Low-Voltage [Hao 93]
 - 1.7 Volts
- Test Ordering
 - Exhaustive Test Repeated
 - Start of Test
 - End of Test
 - Consistency Check
 - Warming, Breaking During Tests

TEST ANALYSIS AND EVALUATION

- Test Chip Architecture Allows
 - On-Chip Data Collection for All Tests
 - Recorded on ATE After Each Test
- For Sampling and Stability Checking
 - First Fail Vector
 - Number of Failures
- Much More Data than Go/No Go for Each Test
 - Enables More Thorough Comparison of Test Techniques

CONCLUSION

- Described Experiment to Evaluate Test Techniques
 - Designed, Manufactured and Tested 5,491 Die
 - Evaluated Many Test Techniques
 - Real Production Failures
- Non-Trivial to Design and Perform Experiment
 - Defining the Architecture
 - Choice of CUTS
 - Large ATE Program
- Entire Design is Available
 - Can Do Similar Experiments in Other Technologies
- Results
 - Discussed in Next Presentation

EPILOGUE

- Test Chip Nickname
 - Murphy Chip
- Milestones
 - Nov 91 – First Hughes/Stanford Meeting
 - Jan 92 – Projected Completion Date – Dec 92
 - Feb 92 – 5 Sec. ATE Time, 20% Support Circuitry
 - Jun 92 – Finalized CUTs
 - Jul 93 – Started Testing Prototypes
 - Jun 94 – Started Production Testing
 - Jun 94 – 76 Sec. ATE Time, 50% Support Circuitry
 - Feb 95– Completed Production Testing
 - Oct 95 – Still Analyzing Data
PREVIOUS WORK

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CUT</th>
<th>Test Applied</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velazco 90</td>
<td>900</td>
<td>Various les, Vrf. physically cut lines</td>
<td>Shorter tests have lower coverage</td>
</tr>
<tr>
<td>[Grenoble 90]</td>
<td>900</td>
<td>2,500 gate, 130,000 ICs</td>
<td>Various les, Vrf. physically cut lines</td>
</tr>
<tr>
<td>[Das 90]</td>
<td>900</td>
<td>7750 transistor, 77,912 ICs</td>
<td>99.7% Stuck-At coverage</td>
</tr>
<tr>
<td>[P document 90]</td>
<td>900</td>
<td>8,590 gate, 45,500 ICs</td>
<td>50% inductors, 90% inductors</td>
</tr>
<tr>
<td>[Maxwell 91]</td>
<td>900</td>
<td>8,590 gate, 26,550 ICs</td>
<td>Need all types of IDDQ tests for more defects</td>
</tr>
<tr>
<td>[Ando 91]</td>
<td>900</td>
<td>40K, 3M OSE, 400 ICs, 114, SOG</td>
<td>Need more testing for more defects</td>
</tr>
<tr>
<td>[Perry 92]</td>
<td>900</td>
<td>4,500 gate, 1 year of operation</td>
<td>99.9% Stuck-At</td>
</tr>
</tbody>
</table>

• Give Useful Insights, But Not Complete

POSSIBLE CRITICISMS

• Sample Size Too Small
 • Prototypes + 5,491 die, 20 CUTs/die
• Support Circuitry Tests Incomplete
 • Found No Problems With Support Circuitry in Stage 2 Tests
• Scaling of Results
 • Are results General, Scaling, What Predictions can be Made?
• Type I Errors
• Effect of Compaction of Responses on Test Analysis

EXPERIMENTAL RESULTS -- PROPAGATION DELAY

TEST CHIP EXPERIMENT

- Clock Rate At Which CUT Fails
- Average Data From 10 Working CUTs
- Slumberger 100MHz Tester
- Decrease Cycle In 25 ps Steps

<table>
<thead>
<tr>
<th>Cycle Time</th>
<th>Percent Faster</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.295 ns</td>
<td>0.00%</td>
</tr>
<tr>
<td>10.245 ns</td>
<td>5.00%</td>
</tr>
<tr>
<td>10.240 ns</td>
<td>5.19%</td>
</tr>
<tr>
<td>10.235 ns</td>
<td>5.26%</td>
</tr>
<tr>
<td>10.230 ns</td>
<td>5.33%</td>
</tr>
<tr>
<td>10.225 ns</td>
<td>5.40%</td>
</tr>
<tr>
<td>10.220 ns</td>
<td>5.47%</td>
</tr>
<tr>
<td>10.215 ns</td>
<td>5.53%</td>
</tr>
<tr>
<td>10.210 ns</td>
<td>5.60%</td>
</tr>
<tr>
<td>10.205 ns</td>
<td>5.67%</td>
</tr>
</tbody>
</table>

Period = 10.295 ns (97 MHz)